File: sim.Krig.R

package info (click to toggle)
r-cran-fields 16.3.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,972 kB
  • sloc: fortran: 1,021; ansic: 288; sh: 35; makefile: 2
file content (140 lines) | stat: -rw-r--r-- 4,895 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#
# fields  is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2024 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka,  douglasnychka@gmail.com,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
"sim.Krig" <- function(object, xp, M = 1, 
    verbose = FALSE, ...) {
        tau2 <- object$best.model[2]
        sigma <- object$best.model[3]
    #
    # check for unique rows of xp
    if (any(duplicated(xp))) {
        stop(" predictions locations should be unique")
    }
    #
    # set up various sizes of arrays
    m <- nrow(xp)
    n <- nrow(object$xM)
    N <- length(object$y)
    if (verbose) {
        cat(" m,n,N", m, n, N, fill = TRUE)
    }
    #transform the new points
    xc <- object$transform$x.center
    xs <- object$transform$x.scale
    xpM <- scale(xp, xc, xs)
    # complete set of points for prediction.
    # check for replicates and adjust
    x <- rbind(object$xM, xpM)
    if (verbose) {
        cat("full x ", fill = TRUE)
        print(x)
    }
    #
    # find indices of all rows of xp that correspond to rows of
    # xM and then collapse x to unique rows.
    rep.x.info <- fields.duplicated.matrix(x)
    x <- as.matrix(x[!duplicated(rep.x.info), ])
    
    if (verbose) {
        cat("full x without duplicates ", fill = TRUE)
        print(x)
    }
    
    N.full <- nrow(x)
    if (verbose) {
        cat("N.full", N.full, fill = TRUE)
    }
    # these give locations in x matrix to reconstruct xp matrix
    xp.ind <- rep.x.info[(1:m) + n]
    if (verbose) {
        print(N.full)
        print(x)
    }
    if (verbose) {
        cat("reconstruction of xp from collapsed locations", 
            fill = TRUE)
        print(x[xp.ind, ])
    }
    #
    # Sigma is full covariance at the data locations and at prediction points.
    #
    Sigma <- sigma * do.call(object$cov.function.name, c(object$args, 
        list(x1 = x, x2 = x)))
    #
    # square root of Sigma for simulating field
    # Cholesky is fast but not very stable.
    #
    # the following code line is similar to chol(Sigma)-> Scol
    # but adds possible additional arguments controlling the Cholesky
    # from the Krig object.
    #
    Schol <- do.call("chol", c(list(x = Sigma), object$chol.args))
    #
    # output matrix to hold results
    N.full <- nrow(x)
    out <- matrix(NA, nrow = m, ncol = M)
    #
    # find conditional mean field from initial fit
    # don't multiply by sd or add mean if this is
    # a correlation model fit.
    # (these are added at the predict step).
    h.hat <- predict(object, xp, ...)
    # marginal standard deviation of field.
    temp.sd <- 1
    #
    #
    # this is not 1 if Krig  object is a corelation model.
    if (object$correlation.model) {
        if (!is.na(object$sd.obj[1])) {
            temp.sd <- predict(object$sd.obj, x)
        }
    }
    #
    #  Define W2i for simulating errors.
    #
    W2i <- Krig.make.Wi(object)$W2i
    for (k in 1:M) {
        # simulate full field
        h <- t(Schol) %*% rnorm(N.full)
        # value of simulated field at observations
        #
        # NOTE: fixed part of model (null space) need not be simulated
        # because the  estimator is unbiased for this part.
        # the variability is still captured because the fixed part
        # is still estimated as part of the predict step below
        h.data <- h[1:n]
        # expand the values according to the replicate pattern
        h.data <- h.data[object$rep.info]
        # create synthetic data
        y.synthetic <- h.data + sqrt(tau2) * W2i %d*% rnorm(N)
        # predict at xp using these data
        # and subtract from 'true' value
        # note that true values of field have to be expanded in the
        # case of common locations between xM and xp.
        h.true <- (h[xp.ind])
        temp.error <- predict(object, xp, y = y.synthetic, eval.correlation.model = FALSE, ...) - 
            h.true
        # add the error to the actual estimate  (conditional mean)
        # and adjust by marginal standard deviation
        out[,k ] <- h.hat + temp.error * temp.sd
    }
    out
}