1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
#
# fields is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2024 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka, douglasnychka@gmail.com,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
spatialProcess <- function(x, y, weights = rep(1, nrow(x)), Z = NULL,
ZCommon = NULL,
mKrig.args = NULL,
cov.function = NULL,
cov.args = NULL,
parGrid = NULL,
reltol = 1e-4,
na.rm = TRUE,
verbose = FALSE,
REML = FALSE,
cov.params.start = NULL,
gridN = 5,
profileLambda = FALSE,
profileARange = FALSE,
profileGridN = 15,
gridARange = NULL,
gridLambda = NULL,
CILevel = .95,
iseed = 303,
collapseFixedEffect = TRUE,
...) {
# Through out this code: obj is the output list and will be added to throughout the computation
# This device is typical in fields functions where a list is built up in the process of the
# computation.
# THE RULES:
# Being in the cov.params.start list means a parameter will be optimized
# by maximum likelhood.
# If a parameter is in the cov.args list it will be fixed at that value
#
# NOTE all the ... extra arguents are assumed to be for the cov.args list
GCV<- FALSE # A top level placeholder to add GCV search capability once
# algorithm is stable
# this default choice is used in the next level functions.
############################################################
#### Setting some defaults for the covariance function and parameters
############################################################
# It is also convenient to just add a few arugments of the covariance driectly in the
# this list collects those. E.g. spatialProcess( x, y, Covariance="Exponential" )
# will pass this choice along to the default covariance function, stationary.cov
#
extraArgs<- list(...)
if( REML&GCV){
stop("Cannot optimize for both REML and GCV!")
}
# set defaults based on the model passed.
# the following function fills in some typical models and
# just avoids some typing and makes for some clean examples
#
# note this also creates the initial components for the output list.
#
obj<- spatialProcessSetDefaults(x,
cov.function = cov.function,
cov.args = cov.args,
cov.params.start = cov.params.start,
mKrig.args = mKrig.args,
extraArgs = extraArgs,
parGrid = parGrid,
gridN = gridN,
collapseFixedEffect = collapseFixedEffect,
verbose = verbose)
#
# obj$CASE
# 0 evaluate on passed cov parameters but MLEs for sigma, tau found from
# lambda
#
# 1 optimize loglikelihood over any parameters specified in
# cov.params.start but not in cov.args
#
# 2 grid search over parameters using parGrid and generating starting values for
# for the MLEs
#
# 3 profile over lambda and/or aRange
# this is more computationally demanding.
if( verbose){
cat(" The CASE:", obj$CASE, fill=TRUE)
cat("Complete list of components in cov.args: ", "\n",
names(obj$cov.args),fill=TRUE )
cat("Complete list of components in mKrig.args: ", "\n",
names(obj$mKrig.args),fill=TRUE )
}
if( verbose){
cat( "Names cov.args:","\n", names( obj$cov.args), fill=TRUE)
cat( "Names cov.params.start:","\n", names(cov.params.start), fill=TRUE)
cat( "Names argsFull:","\n", names( obj$cov.argsFull),fill=TRUE )
}
####################################################################
# CASE 2 grid search for starting values
####################################################################
if( (obj$CASE == 2 ) ){
if( verbose){
cat("*****************************************", fill=TRUE)
cat("***** Grid search ", fill=TRUE)
cat("***** Grid search starting values: ", fill=TRUE)
print(cov.params.start )
cat("***** parGrid names: " , fill=TRUE)
print( names( parGrid))
cat("***** the grid to search:", fill=TRUE)
print( names( obj$parGrid))
}
InitialGridSearch<- mKrigMLEGrid(x, y,
weights = weights,
Z = Z,
ZCommon = ZCommon,
mKrig.args = mKrig.args,
cov.function = obj$cov.function,
cov.args = obj$cov.args,
par.grid = obj$parGrid,
reltol = reltol,
na.rm = na.rm,
verbose = verbose,
REML = REML,
GCV = GCV,
cov.params.start = cov.params.start)
# use grid search to set starting values
if( all(is.na(InitialGridSearch$summary) )) {
cat("spatialProcess: Problems with optim in grid search", fill=TRUE)
cat("returned object includes the likelihood evaluations up to the
error", fill=TRUE)
InitialGridSearch$optimSuccess<- FALSE
InitialGridSearch$call<- match.call()
return(InitialGridSearch)
}
if( verbose){
cat("results of intitial grid search: ", fill=TRUE)
print(InitialGridSearch$indMax )
}
parNames<- names( obj$parGrid)
if( is.null( cov.params.start)){
cov.params.start<- obj$parGrid[InitialGridSearch$indMax,]
names(cov.params.start )<- parNames
}
else{
cov.params.start[parNames] <-
obj$parGrid[InitialGridSearch$indMax, parNames]
}
}
####################################################################
# CASES 1 , 2 , 3, 4
####################################################################
if(obj$CASE !=0 ){
# optimze over all parameters
# where starting values are given or if
# values in cov.args are omitted.
obj$cov.params.start<- cov.params.start
MLEInfo <-mKrigMLEJoint(x, y, weights = weights, Z = Z,
ZCommon = ZCommon,
mKrig.args = obj$mKrig.args,
cov.function = obj$cov.function,
cov.args = obj$cov.args,
na.rm = na.rm,
reltol=reltol,
cov.params.start = cov.params.start,
REML = REML,
GCV = GCV,
hessian = TRUE,
verbose = verbose,
iseed = iseed)
if( is.na(MLEInfo$summary[1])){
cat("spatialProcess: Problems with optim in mKrigMLEJoint ",
fill=TRUE)
cat("returned object includes the likelihood evaluations up to the
error", fill=TRUE)
MLEInfo$optimSuccess<- FALSE
MLEInfo$call<- match.call()
return(MLEInfo)
}
covarianceMLE<- -1*solve(MLEInfo$optimResults$hessian)
HessianResults<- diag( covarianceMLE)
if( any( HessianResults < 0) ) {
warning("Numerical hessian from optim indicates
MLE is not a maximum")
}
}
################################################################################
# final fit
# now fit spatial model with MLE(s)
# or the value(s) supplied in the call
# reestimate the other parameters for simplicity to get the
# complete mKrig object
####################################################################
# if all parameters are fixed -- don't mess with cov.args
if( obj$CASE == 0){
obj$cov.argsFull <- obj$cov.args
}
else{
dupParameters<- match( names(MLEInfo$pars.MLE ), names(cov.args) )
if( all( is.na(dupParameters)) ){
obj$cov.argsFull<- c( obj$cov.args,
as.list(MLEInfo$pars.MLE) )
}
}
mKrigObj <- do.call( "mKrig",
c( list(x=x,
y=y,
weights=weights,
Z=Z,
ZCommon=ZCommon),
obj$mKrig.args,
list( na.rm=na.rm),
list(cov.function = obj$cov.function),
obj$cov.argsFull
)
)
####################################################################
# sort out output object based on the different cases
# also copy some information from the call and within function
# the output list, obj
####################################################################
obj$GCV <- GCV
obj$REML <- REML
obj$CILevel<- CILevel
if( obj$CASE==0){
obj$MLEInfo <- NULL
obj$MLESummary <- mKrigObj$summary
obj$InitialGridSearch<- NULL
obj$parameterCovariance<- NULL
}
if( obj$CASE==1){
InitialGridSearch<- NULL
}
####################################################################
# Fill in all info related to finding MLE (Not CASE 0)
####################################################################
if( obj$CASE!=0){
# logical to distinguish from optim failure
obj$optimSuccess<-TRUE
#
obj$InitialGridSearch<- InitialGridSearch
obj$MLEInfo<- MLEInfo
obj$MLESummary <- MLEInfo$summary
# NOTE: covariance for lambda and ARange based on log(lambda) and log(ARange)
obj$parameterCovariance<- solve(
-1*MLEInfo$optimResults$hessian)
####################################################################
# Approximate large sample confidence intervals on the transformed scale
# followed by
# then transforming back to original scale (see MLEInfo$par.transform)
# These are filled with NAs when numerical Hessian is not
# positive definite
####################################################################
obj$CITable<- confidenceIntervalMLE(obj, CILevel)
}
# combine everything into the output list, mKrig components first.
obj <- c( mKrigObj,obj)
# replace call in mKrig object with the top level one
# from spatialProcess
obj$call<- match.call()
class(obj) <- c( "spatialProcess","mKrig")
####################################################################
# Profiling depends on complete spatial process obj
# which is why this is last
####################################################################
if (profileLambda) {
obj$profileSummaryLambda <- profileMLE(obj, "lambda",
parGrid = gridLambda,
gridN = profileGridN
)$summary
}
else{
obj$profileSummaryLambda <- NULL
}
if (profileARange) {
obj$profileSummaryARange <- profileMLE(obj, "aRange",
parGrid = gridARange,
gridN = profileGridN,
)$summary
}
else{
obj$profileSummaryARange <- NULL
}
return(obj)
}
|