1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
#
# fields is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2024 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka, douglasnychka@gmail.com,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
spatialProcessSetDefaults<- function( x, cov.function,
cov.args,
cov.params.start,
parGrid,
mKrig.args,
extraArgs = NULL,
gridN = 5,
collapseFixedEffect = TRUE,
verbose=FALSE
)
{
## convenient defaults for GP fitting.
## and also sort out what starting parameter values are provided
# this code runs on by perhaps it is useful to see all the defualts and
# logic in one place.
# Note the stranger device below where mKrig.args is created and amended
# mKrig is the basic computational function for evaluating the likleihood and
# setting up the Kriging predictions.
#
# aRange and lambda are handled specially because are almost always
# estimated and this will simplify the call in this top level function
#
###########################################
## Set some convenient default choices for a
## stationary covariance function
###########################################
if( is.null( cov.function)){
cov.function <- 'stationary.cov'
if( is.null(cov.args) ){
cov.args<- list()
}
if( is.null(cov.args$Covariance )&is.null(extraArgs$Covariance )){
cov.args$Covariance<- "Matern"
if( is.null(cov.args$smoothness )
& is.null(cov.params.start$smoothness )
& is.null(parGrid$smoothness) ){
cov.args$smoothness<- 1.0
}
}
}
###########################################
## Set some convenient default choices for a
## thin plate spline
###########################################
if( cov.function=='Tps.cov'){
# determine cardinal points if not included in
# cov.args
dimX<- ncol( x)
mMin<- max(c(2, ceiling(dimX/2 + 0.1)))
if( is.null( mKrig.args$m)){
# m should satisfy 2*m-dimX >0
mKrig.args<- list( mKrig.args, m=mMin )
}
if( mKrig.args$m < mMin){
stop("m component specified in the mKrig.args list
needs to satisfy 2*m-dimX >0 for the spline to be valid")
}
#
if( is.null(cov.args)){
cov.args<- list()
}
#
if( is.null(cov.args$cardinalX)){
nterms <- choose((mKrig.args$m + dimX - 1), dimX)
cardinalX<- cover.design(x, nterms, num.nn = 50 )$design
cov.args$cardinalX<- cardinalX
}
cov.args$aRange<- NA
}
###########################################
# overwrite the default choices if some are passed as ...
# (some R arcania!)
###########################################
if( !is.null( extraArgs)){
if(!is.null(cov.args)){
ind<- match( names(cov.args), names(extraArgs) )
cov.args <- c( cov.args[is.na(ind)], (extraArgs) )
}
else{
cov.args <- list(extraArgs)
}
}
###########################################
# check for duplicate arguments in starting values and fixed values
###########################################
covArgsNames <- names(cov.args)
covStartNames<-names(cov.params.start)
covParGridNames<- names( parGrid)
#print( covParGridNames)
if( length( intersect( covArgsNames,covStartNames))>0){
cat("A problem with duplicate parameters:", fill=TRUE)
cat("Names cov.args:", fill=TRUE)
print(covArgsNames)
cat("Names cov.params.start :", fill=TRUE)
print(covStartNames)
stop("parameters must either have starting values ( in cov.params.start list)
or be specified as a covariance function argument (in cov.args list) ")
}
if( verbose){
cat("Updated and passed cov.args", fill=TRUE)
print( cov.args)
}
###########################################
# Some logic to figure out how do MLE search over lambda and aRange
###########################################
noLambda<- is.null( cov.args$lambda) & is.null(cov.params.start$lambda)
noARange<- is.null( cov.args$aRange) & is.null(cov.params.start$aRange)
makeDefaultGrid<- (noLambda | noARange) & is.null(parGrid)
# easy default search grid if lambda and/or aRange ahave not been specified
if( makeDefaultGrid ){
if( noLambda){
lGrid<- 10**seq( -4, .5, length.out= gridN)
}
if( noARange){
minX<- apply( x, 2, min)
maxX<- apply( x, 2, max)
xCorners<- rbind( minX,
maxX)
if( is.null( cov.args$Distance)){
dMax<-rdist( rbind(xCorners[1,]), rbind(xCorners[2,]))
}
else{
dMax<- do.call(cov.args$Distance, list(
x1= rbind(xCorners[1,]),
x2= rbind(xCorners[2,]))
)
}
dMax<- c( dMax)
aGrid<- seq( .1*dMax, .7*dMax, length.out= gridN)
}
# now create parGrid
if( noLambda & !noARange){
parGrid<- data.frame( lambda= lGrid)
}
if( noLambda & noARange){
parGrid<- expand.grid( lambda= lGrid, aRange = aGrid)
}
if( !noLambda & noARange){
parGrid<- data.frame( aRange= aGrid)
}
}
###########################################
# Identify the Cases 0 - 4 to set defaults
###########################################
# CASE 0 is to evaluate at fixed lambda and aRange
# and there are no other parameters to optimize over.
if( !is.null( cov.args$lambda) &
!is.null( cov.args$aRange) &
is.null( cov.params.start)
){
CASE<- 0
}
#CASE 1 is to find MLEs using starting values provided a grid has not been
# supplied for an initial grid search.
if( !is.null(cov.params.start) & is.null(parGrid) ){
CASE<- 1
}
if( !is.null(parGrid) ){
CASE<- 2
}
###########################################
# Messing with mKrig
###########################################
# Determine linear fixed model if not specified and add in how to find fixed part.
# collapseFixedEffect is important enough where it is handled at this level.
#
if( is.null(mKrig.args)){
mKrig.args<- list( m=2, collapseFixedEffect=collapseFixedEffect)
}
else{
if( all(names( mKrig.args)!= "collapseFixedEffect")){
mKrig.args<- c( mKrig.args,
list(collapseFixedEffect= collapseFixedEffect))
}
}
# don't find effective df for optimization -- this would add extra computation that is not
# needed
if( is.null(mKrig.args$find.trA) ){
if( (CASE >=3)){
mKrig.args<- c( mKrig.args, list(find.trA = FALSE))
}
else{
mKrig.args<- c( mKrig.args, list(find.trA = TRUE))
}
}
out<-
list(
cov.function = cov.function,
cov.args = cov.args,
mKrig.args = mKrig.args,
CASE = CASE,
parGrid = parGrid
)
return(
out
)
}
|