1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
#
# fields is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2024 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka, douglasnychka@gmail.com,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
"vgram" <- function(loc, y, id = NULL, d = NULL, lon.lat = FALSE,
dmax = NULL, N = NULL, breaks = NULL, prettyBins=FALSE,
type=c("variogram", "covariogram", "correlogram")) {
type=match.arg(type)
#
# if prettyBins is FALSE then generate exactly N breaks and so N-1 bins.
# otherwise number of breaks is at the mercy of the pretty function
# and may be N-1 or something else!
#
# coerce to matrix
y <- cbind(y)
# if nearest neighbor indices are missing create all possible pairs.
if (is.null(id)) {
n <- nrow(loc)
is = rep(1:n, n)
js = rep(1:n, rep(n, n))
ind <- is > js
id <- cbind(is, js)[ind, ]
}
# if distances are missing calculate these
if (is.null(d)) {
loc <- as.matrix(loc)
if (lon.lat) {
d <- rdist.earth.vec(loc[id[,1],], loc[id[,2],]) #we want result in miles, not meters
}
else {
d <- rdist.vec(loc[id[,1],], loc[id[,2],])
}
}
# normalize columns to create correlogram, if necessary
#
if(type == "correlogram") {
tau = apply(y, 2, sd, na.rm=TRUE)
y = sweep(y, 2, (1/tau), FUN="*")
}
# center the columns by their mean and get row means if y is a matrix
#
colMeans <- apply(y, 2, mean, na.rm=TRUE)
yCntr = sweep(y, 2, colMeans)
y1Cntr = yCntr[id[,1],]
y2Cntr = yCntr[id[,2],]
if(type == "variogram") {
vg <- 0.5 * rowMeans(cbind((y1Cntr - y2Cntr)^2),
na.rm = TRUE)
}
else {
vg <- rowMeans(cbind(y1Cntr * y2Cntr),
na.rm = TRUE)
}
#
#information for returned object
#
call <- match.call()
if (is.null(dmax)) {
dmax <- max(d)
}
od <- order(d)
d <- d[od]
vg <- vg[od]
ind <- d <= dmax & !is.na(vg)
## add a binned variogram if breaks are supplied
out <- list(d = d[ind], vgram = vg[ind], call = call, type=type)
if (!is.null(breaks) | !is.null(N)) {
out <- c(out, stats.bin(d[ind], vg[ind], N = N, breaks = breaks,
prettyBins=prettyBins))
}
class(out) = c("vgram", class(out))
out
}
#calculating cross-covariogram and cross-correlogram (cross-covariance and
#cross-correlation)
crossCoVGram = function(loc1, loc2, y1, y2, id = NULL, d = NULL, lon.lat = FALSE,
dmax = NULL, N = NULL, breaks = NULL,
type=c("cross-covariogram", "cross-correlogram"),
prettyBins=FALSE) {
type=match.arg(type)
# coerce to matrix
y1 <- cbind(y1)
y2 <- cbind(y2)
# if nearest neighbor indices are missing create all possible pairs.
if (is.null(id)) {
n1 <- nrow(loc1)
n2 <- nrow(loc2)
id <- cbind(rep(1:n1, n2), rep(1:n2, rep(n1, n2)))
}
# if distances are missing calculate these
if (is.null(d)) {
loc1 <- as.matrix(loc1)
loc2 <- as.matrix(loc2)
if (lon.lat) {
d <- rdist.earth.vec(loc1[id[,1],], loc2[id[,2],]) #we want result in miles, not meters
}
else {
d <- rdist.vec(loc1[id[,1],], loc2[id[,2],])
}
}
#
# calculating covariogram will center the columns by their mean and get row means if y is a matrix
#
colMeans1 <- apply(y1, 2, mean, na.rm=TRUE)
colMeans2 <- apply(y2, 2, mean, na.rm=TRUE)
y1Cntr = sweep(data.matrix(y1), 2, colMeans1) # subtract the column means
y2Cntr = sweep(data.matrix(y2), 2, colMeans2) # subtract the column means
#
# normalize to create cross-correlogram, if necessary
#
if(type == "cross-correlogram") {
tau1 = apply(y1Cntr, 2, sd, na.rm=TRUE)
tau2 = apply(y2Cntr, 2, sd, na.rm=TRUE)
y1Cntr = sweep(y1Cntr, 2, 1/tau1, FUN="*")
y2Cntr = sweep(y2Cntr, 2, 1/tau2, FUN="*")
}
#
# calculate covariance for the given points
#
y1Cntr = y1Cntr[id[,1],]
y2Cntr = y2Cntr[id[,2],]
vg <- rowMeans(cbind(y1Cntr*y2Cntr), na.rm = TRUE)
#
#information for returned object
#
call <- match.call()
if (is.null(dmax)) {
dmax <- max(d)
}
od <- order(d)
d <- d[od]
vg <- vg[od]
ind <- d <= dmax & !is.na(vg)
## add a binned variogram if breaks are supplied
out <- list(d = d[ind], vgram = vg[ind], call = call, type=type)
if (!is.null(breaks) | !is.null(N)) {
out <- c(out, stats.bin(d[ind], vg[ind], N = N, breaks = breaks,
prettyBins=prettyBins))
}
class(out) = c("vgram", class(out))
out
}
#plot only the line of the empirical variogram, where the y coordinates of the line are
#at the means of the bins
plot.vgram = function(x, N=10, breaks = pretty(x$d, N, eps.correct = 1), add=FALSE, ...) {
otherArgs = list(...)
type=x$type
#set y axis label if not set by user
if(is.null(otherArgs$ylab)) {
if(type=="variogram")
otherArgs$ylab = "Variance"
else if(type == "covariogram" || type=="cross-covariogram")
otherArgs$ylab = "Covariance"
else if(type == "correlogram" || type=="cross-correlogram")
otherArgs$ylab = "Correlation"
else
stop("vgram 'type' argument must be either 'variogram', 'covariogram', 'correlogram', 'cross-covariogram', or 'cross-correlogram'")
}
#set x axis label if not set by user
if(is.null(otherArgs$xlab))
otherArgs$xlab = "Distance"
#set plot title if not set by user
if(is.null(otherArgs$main)) {
if(type=="variogram")
otherArgs$main = "Empirical Variogram"
else if(type=="covariogram")
otherArgs$main = "Empirical Covariogram"
else if(type=="correlogram")
otherArgs$main = "Empirical Correlogram"
else if(type=="cross-covariogram")
otherArgs$main = "Empirical Cross-Covariogram"
else if(type=="cross-correlogram")
otherArgs$main = "Empirical Cross-Correlogram"
else
stop("vgram 'type' argument must be either 'variogram', 'covariogram', 'correlogram', 'cross-covariogram', or 'cross-correlogram'")
}
#set ylim for correlogram if not set by user
if(is.null(otherArgs$ylim)) {
if(type == "correlogram" || type=="cross-correlogram")
otherArgs$ylim = c(-1, 1)
}
#set line type if not set by user
if(is.null(otherArgs$type))
otherArgs$type = "o"
#get bin data
dat = getVGMean(x, breaks=breaks)
#get bin centers versus bin means
centers = dat$centers
ys = dat$ys
#remove NAs
notNas = !is.na(ys)
centers = centers[notNas]
ys = ys[notNas]
#plot
if(!add)
do.call("plot", c(list(centers, ys), otherArgs))
else
do.call("lines", c(list(centers, ys), otherArgs))
}
"boxplotVGram" = function(x, N=10, breaks = pretty(x$d, N, eps.correct = 1), plot=TRUE,
plot.args=NULL, ...) {
dists = x$d
type=x$type
if(type == "variogram")
y = sqrt(x$vgram)
else
y = x$vgram
otherArgs = list(...)
#set y axis label if not set by user
if(is.null(otherArgs$ylab)) {
if(type=="variogram")
otherArgs$ylab = "sqrt(Variance)"
else if(type == "covariogram" || type=="cross-covariogram")
otherArgs$ylab = "Covariance"
else if(type == "correlogram" || type=="cross-correlogram")
otherArgs$ylab = "Correlation"
else
stop("vgram 'type' argument must be either 'variogram', 'covariogram', 'correlogram', 'cross-covariogram', or 'cross-correlogram'")
}
#set x axis label if not set by user
if(is.null(otherArgs$xlab))
otherArgs$xlab = "Distance"
#set plot title if not set by user
if(is.null(otherArgs$main)) {
if(type=="variogram")
otherArgs$main = "Empirical Variogram (square root scale) "
else if(type=="covariogram")
otherArgs$main = "Empirical Covariogram"
else if(type=="correlogram")
otherArgs$main = "Empirical Correlogram"
else if(type=="cross-covariogram")
otherArgs$main = "Empirical Cross-Covariogram"
else if(type=="cross-correlogram")
otherArgs$main = "Empirical Cross-Correlogram"
else
stop("vgram 'type' argument must be either 'variogram', 'covariogram', 'correlogram', 'cross-covariogram', or 'cross-correlogram'")
}
#set ylim for correlogram if not set by user
if(is.null(otherArgs$ylim)) {
if(type == "correlogram" || type=="cross-correlogram")
otherArgs$ylim = c(-1, 1)
}
#make boxplot
bplot = do.call("bplot.xy", c(list(x=dists, y=y, N=N, breaks=breaks, plot=plot), otherArgs))
#return bplot.xy statistics if plot==FALSE
if(!plot)
return(bplot)
# #plot bin means with plot parameters given in plot.args (with defaults to look pretty)
# plot.args$x=x
# plot.args$add=TRUE
# plot.args$breaks=breaks
# if(is.null(plot.args$col))
# plot.args$col = "red"
# if(is.null(plot.args$type))
# plot.args$type = "p"
# do.call("plot.vgram", plot.args)
}
# Returns the variogram bin centers and means
getVGMean = function(x, N = 10,
breaks = pretty(x$d, N, eps.correct = 1))
{
# Can calculate mean or other statistical functions of the values in the bins
VGstat = function(VG, minD=-Inf, maxD=Inf, statFun="mean", ...) {
ind = (VG$d > minD) & (VG$d < maxD)
do.call(statFun, c(list(VG$vgram[ind]), list(...)))
}
#helper function to get mean from any single bin
meansFromBreak = function(breakBounds = c(-Inf, Inf)) {
VGstat(x, minD=breakBounds[1], maxD=breakBounds[2], na.rm=TRUE)
}
#apply helper function to all bins
lowBreaks = breaks
highBreaks = c(breaks[2:length(breaks)], Inf)
breakBounds = cbind(lowBreaks, highBreaks)
centers = apply(breakBounds, 1, mean, na.rm=TRUE)
ys = apply(breakBounds, 1, meansFromBreak)
#take square root if variogram
# if(x$type == "variogram")
# ys=sqrt(ys)
return(list(centers=centers, ys=ys, type=x$type))
}
|