File: CO.Rd

package info (click to toggle)
r-cran-fields 16.3.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,972 kB
  • sloc: fortran: 1,021; ansic: 288; sh: 35; makefile: 2
file content (265 lines) | stat: -rw-r--r-- 8,397 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
%#
%# fields  is a package for analysis of spatial data written for
%# the R software environment.
%# Copyright (C) 2024 Colorado School of Mines
%# 1500 Illinois St., Golden, CO 80401
%# Contact: Douglas Nychka,  douglasnychka@gmail.edu,
%#
%# This program is free software; you can redistribute it and/or modify
%# it under the terms of the GNU General Public License as published by
%# the Free Software Foundation; either version 2 of the License, or
%# (at your option) any later version.
%# This program is distributed in the hope that it will be useful,
%# but WITHOUT ANY WARRANTY; without even the implied warranty of
%# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%# GNU General Public License for more details.
%#
%# You should have received a copy of the GNU General Public License
%# along with the R software environment if not, write to the Free Software
%# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
%# or see http://www.r-project.org/Licenses/GPL-2
%##END HEADER
%##END HEADER

\name{Colorado Monthly Meteorological Data}
\alias{COmonthlyMet}
\alias{CO.elev}
\alias{CO.id}
\alias{CO.loc}
\alias{CO.names}
\alias{CO.ppt}
\alias{CO.ppt.MAM}
\alias{CO.tmax}
\alias{CO.tmax.MAM}
\alias{CO.tmin}
\alias{CO.tmin.MAM}
\alias{CO.years}
\alias{CO.ppt.MAM.climate}
\alias{CO.tmax.MAM.climate}
\alias{CO.tmean.MAM.climate}
\alias{CO.tmin.MAM.climate}
\alias{CO.elevGrid}
\alias{CO.Grid}

\title{Monthly surface meterology for Colorado 1895-1997}

\description{

Source:
 These is a group of R data sets for monthly min/max temperatures and
precipitation over the period 1895-1997. It is a subset extracted from
the more extensive US data record.
Temperature is in degrees C and
precipitation is total monthly accumulation in millimeters. Note that
minimum (maximum) monthly tempertuare is the mean of the daily minimum
(maximum) temperatures. 

Data domain:
 
A rectagular lon/lat region [-109.5,-101]x [36.5,41.5] larger than the
boundary of Colorado comprises approximately 400 stations. Although
there are additional stations reported in this domain, stations that
only report preicipitation or only report temperatures have been
excluded. In addition stations that have mismatches between locations
and elevations from the two meta data files have also been excluded. The
net result is 367 stations that have colocated temperatures and
precipitation. 

}

\format{
This group of data sets is organized with the following  objects:
\describe{
\item{CO.info}{A data frame with columns: station id, elev, lon, lat, station name}


\item{CO.elev}{elevation in meters}

\item{CO.elevGrid}{An image object being elevation in meters on a 4 km grid covering Colorado. }

\item{CO.id}{ alphanumeric station id codes}

\item{CO.loc}{locations in lon/lat}

\item{CO.Grid}{Just the grid.list used in the CO.elevGrid.}

\item{CO.ppt CO.tmax CO.tmin}{Monthly means as three dimensional arrays ( Year, Month, Station).
Temperature is in degrees C and precipitation in total monthly
accumulation in millimeters.}

\item{CO.ppt.MAM CO.tmax.MAM CO.tmin.MAM}{Spring seasonal means 
(March, April,May) as two dimensional arrays
   (Year, Station).}

 \item{CO.MAM.ppt.climate CO.MAM.tmax.climate CO.MAM.tmin.climate}{Spring seasonal means 
(March, April,May) means by station for the period 1960-1990. If less than 15 years are present over this period an NA is recorded. 
No detreding or other adjustments have been made for these mean estimates. 
}
}


}

\examples{

data(COmonthlyMet)

#Spatial plot of 1997 Spring average daily maximum temps
 quilt.plot( CO.loc,CO.tmax.MAM[103,]  )
 US( add=TRUE)
 title( "Recorded MAM max temperatures (1997)")

# min and max temperatures against elevation

matplot( CO.elev, cbind( CO.tmax.MAM[103,], CO.tmin.MAM[103,]),
  pch="o", type="p",
  col=c("red", "blue"), xlab="Elevation (m)", ylab="Temperature (C)")
title("Recorded MAM max (red) and min (blue) temperatures 1997")

#Fitting a spatial model:
obj<- Tps(CO.loc,CO.tmax.MAM.climate,  Z= CO.elev )
\dontrun{
out<- spatialProcess(CO.loc,CO.tmax.MAM.climate, 
          smoothness=1.0, Z= CO.elev)
surface( out)
	  }
	  
         


}
\section{Creation of data subset}{
Here is the precise R script used to create this data subset from the 
larger US monthly data set. This parent, R binary file can be obtained
by contacting Doug Nychka (nychka@mines.edu).

 These technical details are not needed for casual use of the data -- 
skip down to examples for some R code that summarizes these data.
 
\preformatted{

attach("RData.USmonthlyMet.bin")

#To find a subset that covers Colorado (with a bit extra):


indt<- UStinfo$lon< -101 &  UStinfo$lon > -109.5
indt<- indt & UStinfo$lat<41.5 &  UStinfo$lat>36.5

# check  US(); points( UStinfo[indt,3:4])

#find common names restricting choices to the temperature names
tn<-  match(  UStinfo$station.id, USpinfo$station.id)
indt<- !is.na(tn) & indt

# compare  metadata locations and elevations. 
# initial matches to precip stations
CO.id<- UStinfo[indt,1]
CO.names<- as.character(UStinfo[indt,5])
pn<-  match(  CO.id, USpinfo$station.id)

loc1<- cbind( UStinfo$lon[indt], UStinfo$lat[indt], UStinfo$elev[indt])
loc2<- cbind( USpinfo$lon[pn], USpinfo$lat[pn], USpinfo$elev[pn])

abs(loc1- loc2) ->  temp
indbad<- temp[,1] > .02 | temp[,2]> .02 |  temp[,3] > 100

# tolerance at 100 meters set mainly to include the CLIMAX station
# a high altitude station. 

data.frame(CO.names[ indbad], loc1[indbad,], loc2[indbad,], temp[indbad,] )


#  CO.names.indbad.      X1    X2   X3    X1.1  X2.1 X3.1 X1.2 X2.2 X3.2
#1     ALTENBERN    -108.38 39.50 1734 -108.53 39.58 2074 0.15 0.08  340
#2     CAMPO 7 S    -102.57 37.02 1311 -102.68 37.08 1312 0.11 0.06    1
#3     FLAGLER 2 NW -103.08 39.32 1519 -103.07 39.28 1525 0.01 0.04    6
#4     GATEWAY 1 SE -108.98 38.68 1391 -108.93 38.70 1495 0.05 0.02  104
#5     IDALIA       -102.27 39.77 1211 -102.28 39.70 1208 0.01 0.07    3
#6     KARVAL       -103.53 38.73 1549 -103.52 38.80 1559 0.01 0.07   10
#7     NEW RAYMER   -103.85 40.60 1458 -103.83 40.58 1510 0.02 0.02   52

# modify the indt list to exclude these mismatches (there are 7 here)

badones<-  match(  CO.id[indbad], UStinfo$station.id)
indt[ badones] <- FALSE

###### now have working set of CO stations have both temp and precip 
##### and are reasonably close to each other. 

N<- sum( indt)
# put data in time series order instead of table of year by month.
CO.tmax<-  UStmax[,,indt]
CO.tmin<-  UStmin[,,indt]

CO.id<- as.character(UStinfo[indt,1])
CO.elev<- UStinfo[indt,2]
CO.loc <-  UStinfo[indt,3:4]
CO.names<- as.character(UStinfo[indt,5])

CO.years<- 1895:1997

# now find precip stations that match temp stations
pn<-  match(  CO.id, USpinfo$station.id)
# number of orphans
sum( is.na( pn))

pn<- pn[ !is.na( pn)]
CO.ppt<- USppt[,,pn]

# checks --- all should zero

ind<- match( CO.id[45], USpinfo$station.id)
mean( abs( c(USppt[,,ind])   - c(CO.ppt[,,45]) ) , na.rm=TRUE)

ind<- match( CO.id[45], UStinfo$station.id)
mean( abs(c((UStmax[,,ind])) - c(CO.tmax[,,45])), na.rm=TRUE)

mean( abs(c((UStmin[,,ind])) - c(CO.tmin[,,45])), na.rm=TRUE)


# check order
ind<- match( CO.id, USpinfo$station.id)
 sum( CO.id != USpinfo$station.id[ind])
ind<- match( CO.id, UStinfo$station.id)
 sum( CO.id != UStinfo$station.id[ind])


# (3 4 5) (6 7 8) (9 10 11)  (12 1 2)
N<- ncol( CO.tmax)

CO.tmax.MAM<- apply( CO.tmax[,3:5,],c(1,3), "mean")

CO.tmin.MAM<- apply( CO.tmin[,3:5,],c(1,3), "mean")

CO.ppt.MAM<- apply( CO.ppt[,3:5,],c(1,3), "sum")

# Now average over 1961-1990
ind<-  CO.years>=1960 & CO.years < 1990

 temp<- stats( CO.tmax.MAM[ind,])
 CO.tmax.MAM.climate<- ifelse( temp[1,] >= 15, temp[2,], NA)

 temp<- stats( CO.tmin.MAM[ind,])
 CO.tmin.MAM.climate<- ifelse( temp[1,] >= 15, temp[2,], NA)

 CO.tmean.MAM.climate<- (CO.tmin.MAM.climate + CO.tmin.MAM.climate)/2

 temp<- stats( CO.ppt.MAM[ind,])
 CO.ppt.MAM.climate<- ifelse( temp[1,] >= 15, temp[2,], NA)


save( list=c( "CO.tmax", "CO.tmin", "CO.ppt",
              "CO.id", "CO.loc","CO.years",
              "CO.names","CO.elev", 
              "CO.tmin.MAM", "CO.tmax.MAM", "CO.ppt.MAM",
              "CO.tmin.MAM.climate", "CO.tmax.MAM.climate", 
              "CO.ppt.MAM.climate", "CO.tmean.MAM.climate"), 
               file="COmonthlyMet.rda")
}

}
 
\keyword{datasets}
% docclass is data
% Converted by Sd2Rd version 1.21.