1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
%#
%# fields is a package for analysis of spatial data written for
%# the R software environment.
%# Copyright (C) 2024 Colorado School of Mines
%# 1500 Illinois St., Golden, CO 80401
%# Contact: Douglas Nychka, douglasnychka@gmail.edu,
%#
%# This program is free software; you can redistribute it and/or modify
%# it under the terms of the GNU General Public License as published by
%# the Free Software Foundation; either version 2 of the License, or
%# (at your option) any later version.
%# This program is distributed in the hope that it will be useful,
%# but WITHOUT ANY WARRANTY; without even the implied warranty of
%# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
%# GNU General Public License for more details.
%#
%# You should have received a copy of the GNU General Public License
%# along with the R software environment if not, write to the Free Software
%# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
%# or see http://www.r-project.org/Licenses/GPL-2
%##END HEADER
%##END HEADER
\name{Colorado Monthly Meteorological Data}
\alias{COmonthlyMet}
\alias{CO.elev}
\alias{CO.id}
\alias{CO.loc}
\alias{CO.names}
\alias{CO.ppt}
\alias{CO.ppt.MAM}
\alias{CO.tmax}
\alias{CO.tmax.MAM}
\alias{CO.tmin}
\alias{CO.tmin.MAM}
\alias{CO.years}
\alias{CO.ppt.MAM.climate}
\alias{CO.tmax.MAM.climate}
\alias{CO.tmean.MAM.climate}
\alias{CO.tmin.MAM.climate}
\alias{CO.elevGrid}
\alias{CO.Grid}
\title{Monthly surface meterology for Colorado 1895-1997}
\description{
Source:
These is a group of R data sets for monthly min/max temperatures and
precipitation over the period 1895-1997. It is a subset extracted from
the more extensive US data record.
Temperature is in degrees C and
precipitation is total monthly accumulation in millimeters. Note that
minimum (maximum) monthly tempertuare is the mean of the daily minimum
(maximum) temperatures.
Data domain:
A rectagular lon/lat region [-109.5,-101]x [36.5,41.5] larger than the
boundary of Colorado comprises approximately 400 stations. Although
there are additional stations reported in this domain, stations that
only report preicipitation or only report temperatures have been
excluded. In addition stations that have mismatches between locations
and elevations from the two meta data files have also been excluded. The
net result is 367 stations that have colocated temperatures and
precipitation.
}
\format{
This group of data sets is organized with the following objects:
\describe{
\item{CO.info}{A data frame with columns: station id, elev, lon, lat, station name}
\item{CO.elev}{elevation in meters}
\item{CO.elevGrid}{An image object being elevation in meters on a 4 km grid covering Colorado. }
\item{CO.id}{ alphanumeric station id codes}
\item{CO.loc}{locations in lon/lat}
\item{CO.Grid}{Just the grid.list used in the CO.elevGrid.}
\item{CO.ppt CO.tmax CO.tmin}{Monthly means as three dimensional arrays ( Year, Month, Station).
Temperature is in degrees C and precipitation in total monthly
accumulation in millimeters.}
\item{CO.ppt.MAM CO.tmax.MAM CO.tmin.MAM}{Spring seasonal means
(March, April,May) as two dimensional arrays
(Year, Station).}
\item{CO.MAM.ppt.climate CO.MAM.tmax.climate CO.MAM.tmin.climate}{Spring seasonal means
(March, April,May) means by station for the period 1960-1990. If less than 15 years are present over this period an NA is recorded.
No detreding or other adjustments have been made for these mean estimates.
}
}
}
\examples{
data(COmonthlyMet)
#Spatial plot of 1997 Spring average daily maximum temps
quilt.plot( CO.loc,CO.tmax.MAM[103,] )
US( add=TRUE)
title( "Recorded MAM max temperatures (1997)")
# min and max temperatures against elevation
matplot( CO.elev, cbind( CO.tmax.MAM[103,], CO.tmin.MAM[103,]),
pch="o", type="p",
col=c("red", "blue"), xlab="Elevation (m)", ylab="Temperature (C)")
title("Recorded MAM max (red) and min (blue) temperatures 1997")
#Fitting a spatial model:
obj<- Tps(CO.loc,CO.tmax.MAM.climate, Z= CO.elev )
\dontrun{
out<- spatialProcess(CO.loc,CO.tmax.MAM.climate,
smoothness=1.0, Z= CO.elev)
surface( out)
}
}
\section{Creation of data subset}{
Here is the precise R script used to create this data subset from the
larger US monthly data set. This parent, R binary file can be obtained
by contacting Doug Nychka (nychka@mines.edu).
These technical details are not needed for casual use of the data --
skip down to examples for some R code that summarizes these data.
\preformatted{
attach("RData.USmonthlyMet.bin")
#To find a subset that covers Colorado (with a bit extra):
indt<- UStinfo$lon< -101 & UStinfo$lon > -109.5
indt<- indt & UStinfo$lat<41.5 & UStinfo$lat>36.5
# check US(); points( UStinfo[indt,3:4])
#find common names restricting choices to the temperature names
tn<- match( UStinfo$station.id, USpinfo$station.id)
indt<- !is.na(tn) & indt
# compare metadata locations and elevations.
# initial matches to precip stations
CO.id<- UStinfo[indt,1]
CO.names<- as.character(UStinfo[indt,5])
pn<- match( CO.id, USpinfo$station.id)
loc1<- cbind( UStinfo$lon[indt], UStinfo$lat[indt], UStinfo$elev[indt])
loc2<- cbind( USpinfo$lon[pn], USpinfo$lat[pn], USpinfo$elev[pn])
abs(loc1- loc2) -> temp
indbad<- temp[,1] > .02 | temp[,2]> .02 | temp[,3] > 100
# tolerance at 100 meters set mainly to include the CLIMAX station
# a high altitude station.
data.frame(CO.names[ indbad], loc1[indbad,], loc2[indbad,], temp[indbad,] )
# CO.names.indbad. X1 X2 X3 X1.1 X2.1 X3.1 X1.2 X2.2 X3.2
#1 ALTENBERN -108.38 39.50 1734 -108.53 39.58 2074 0.15 0.08 340
#2 CAMPO 7 S -102.57 37.02 1311 -102.68 37.08 1312 0.11 0.06 1
#3 FLAGLER 2 NW -103.08 39.32 1519 -103.07 39.28 1525 0.01 0.04 6
#4 GATEWAY 1 SE -108.98 38.68 1391 -108.93 38.70 1495 0.05 0.02 104
#5 IDALIA -102.27 39.77 1211 -102.28 39.70 1208 0.01 0.07 3
#6 KARVAL -103.53 38.73 1549 -103.52 38.80 1559 0.01 0.07 10
#7 NEW RAYMER -103.85 40.60 1458 -103.83 40.58 1510 0.02 0.02 52
# modify the indt list to exclude these mismatches (there are 7 here)
badones<- match( CO.id[indbad], UStinfo$station.id)
indt[ badones] <- FALSE
###### now have working set of CO stations have both temp and precip
##### and are reasonably close to each other.
N<- sum( indt)
# put data in time series order instead of table of year by month.
CO.tmax<- UStmax[,,indt]
CO.tmin<- UStmin[,,indt]
CO.id<- as.character(UStinfo[indt,1])
CO.elev<- UStinfo[indt,2]
CO.loc <- UStinfo[indt,3:4]
CO.names<- as.character(UStinfo[indt,5])
CO.years<- 1895:1997
# now find precip stations that match temp stations
pn<- match( CO.id, USpinfo$station.id)
# number of orphans
sum( is.na( pn))
pn<- pn[ !is.na( pn)]
CO.ppt<- USppt[,,pn]
# checks --- all should zero
ind<- match( CO.id[45], USpinfo$station.id)
mean( abs( c(USppt[,,ind]) - c(CO.ppt[,,45]) ) , na.rm=TRUE)
ind<- match( CO.id[45], UStinfo$station.id)
mean( abs(c((UStmax[,,ind])) - c(CO.tmax[,,45])), na.rm=TRUE)
mean( abs(c((UStmin[,,ind])) - c(CO.tmin[,,45])), na.rm=TRUE)
# check order
ind<- match( CO.id, USpinfo$station.id)
sum( CO.id != USpinfo$station.id[ind])
ind<- match( CO.id, UStinfo$station.id)
sum( CO.id != UStinfo$station.id[ind])
# (3 4 5) (6 7 8) (9 10 11) (12 1 2)
N<- ncol( CO.tmax)
CO.tmax.MAM<- apply( CO.tmax[,3:5,],c(1,3), "mean")
CO.tmin.MAM<- apply( CO.tmin[,3:5,],c(1,3), "mean")
CO.ppt.MAM<- apply( CO.ppt[,3:5,],c(1,3), "sum")
# Now average over 1961-1990
ind<- CO.years>=1960 & CO.years < 1990
temp<- stats( CO.tmax.MAM[ind,])
CO.tmax.MAM.climate<- ifelse( temp[1,] >= 15, temp[2,], NA)
temp<- stats( CO.tmin.MAM[ind,])
CO.tmin.MAM.climate<- ifelse( temp[1,] >= 15, temp[2,], NA)
CO.tmean.MAM.climate<- (CO.tmin.MAM.climate + CO.tmin.MAM.climate)/2
temp<- stats( CO.ppt.MAM[ind,])
CO.ppt.MAM.climate<- ifelse( temp[1,] >= 15, temp[2,], NA)
save( list=c( "CO.tmax", "CO.tmin", "CO.ppt",
"CO.id", "CO.loc","CO.years",
"CO.names","CO.elev",
"CO.tmin.MAM", "CO.tmax.MAM", "CO.ppt.MAM",
"CO.tmin.MAM.climate", "CO.tmax.MAM.climate",
"CO.ppt.MAM.climate", "CO.tmean.MAM.climate"),
file="COmonthlyMet.rda")
}
}
\keyword{datasets}
% docclass is data
% Converted by Sd2Rd version 1.21.
|