1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
%#
%# fields is a package for analysis of spatial data written for
%# the R software environment.
%# Copyright (C) 2024 Colorado School of Mines
%# 1500 Illinois St., Golden, CO 80401
%# Contact: Douglas Nychka, douglasnychka@gmail.edu,
%#
%# This program is free software; you can redistribute it and/or modify
%# it under the terms of the GNU General Public License as published by
%# the Free Software Foundation; either version 2 of the License, or
%# (at your option) any later version.
%# This program is distributed in the hope that it will be useful,
%# but WITHOUT ANY WARRANTY; without even the implied warranty of
%# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
%# GNU General Public License for more details.
%#
%# You should have received a copy of the GNU General Public License
%# along with the R software environment if not, write to the Free Software
%# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
%# or see http://www.r-project.org/Licenses/GPL-2
%##END HEADER
%##END HEADER
\name{QTps}
\alias{QSreg}
\alias{QTps}
%- Also NEED an '\alias' for EACH other topic documented here.
\title{
%% ~~function to do ... ~~
Robust and Quantile smoothing using a thin-plate spline
}
\description{
%% ~~ A concise (1-5 lines) description of what the function does. ~~
This function uses the standard thin plate spline function \code{Tps} and a algorithm based on
psuedo data to compute robust smoothers based on the Huber weight function. By modifying the
symmetry of the Huber function and changing the scale one can also approximate a quantile
smoother. This function is experimental in that is not clear how efficient the psuedo-data
algorithm is acheiving convergence to a solution.
}
\usage{
QTps(x, Y, ..., f.start = NULL, psi.scale = NULL, C = 1, alpha = 0.5, Niterations = 100,
tolerance = 0.001, verbose = FALSE)
QSreg(x, Y, lambda = NA, f.start = NULL, psi.scale = NULL,
C = 1, alpha = 0.5, Niterations = 100, tolerance = 0.001,
verbose = FALSE)
}
%- maybe also 'usage' for other objects documented here.
\arguments{
\item{x}{
Locations of observations.
}
\item{Y}{
Observations
}
\item{lambda}{Value of the smoothing parameter. If NA found by an approximate corss-validation criterion.}
\item{\dots}{
Any other arguments to pass to the Tps function, which are then passed to the Krig function. \code{ give.warnings =FALSE} can be used to turn off pesky warnings when not important (see example below).
}
\item{C}{Scaling for huber robust weighting function. (See below.) Usually it is better to leave this at 1 and
just modify the scale \code{psi.scale} according to the size of the residuals. }
\item{f.start}{
The initial value for the estimated function. If NULL then the constant function at the
median of \code{Y} will be used. NOTE: This may not be a very good starting vector and a more robust
method would be to use a local robust smoother.
}
\item{psi.scale}{
The scale value for the Huber function. When C=1, this is the point where the Huber weight function will
change from quadratic to linear. Default is to use the scale \code{.05*mad(Y)} and \code{C=1} . Very small scales relative to the
size of the residuals will cause the estimate to approximate a quantile spline. Very large scales will yield the
ordinary least squares spline.
}
\item{alpha}{
The quantile that is estimated by the spline. Default is .5 giving a median. Equivalently this parameter controls the slope of the linear wings in the Huber function \code{2*alpha} for the positive wing and \code{2*(1-alpha)}
for the negative wing.
}
\item{Niterations}{
Maximum number of interations of the psuedo data algorithm
}
\item{tolerance}{
Convergence criterion based on the relative change in the predicted values of the function estimate. Specifically if the criterion \code{mean(abs(f.hat.new - f.hat))/mean(abs(f.hat))} is less than \code{tolerance} the iterations re stopped.
}
\item{verbose}{
If TRUE intermediate results are printed out.
}
}
\details{
These are experimental functions that use the psuedo-value algorithm to compute a class of robust and quantile problems. \code{QTps} use the \code{Tps} function as its least squares base smoother while \code{QSreg} uses the efficient \code{sreg} for 1-D cubic smoothing spline models. Currently for the 1-d spline problem we recommend using the (or at least comparing to ) the old \code{qsreg} function. \code{QSreg} was created to produce a more readable version of the 1-d method that follows the thin plate spline format.
The Thin Plate Spline/ Kriging model through fields is: Y.k= f(x.k) = P(x.k) + Z(x.k) + e.k
with the goal of estimating the smooth function: f(x)= P(x) + Z(x)
The extension in this function is that e.k can be heavy tailed or have outliers and one would still like a
robust estimate of f(x). In the quantile approximation (very small scale parameter) f(x) is an estimate of the
alpha quantile of the conditional distribution of Y given x.
The algorithm is iterative and involves at each step tapering the residuals in a nonlinear way.
Let psi.wght be this tapering function then given an initial estimate of f, f.hat the new data for smoothing is
\code{ Y.psuedo<- f.hat + psi.scale* psi.wght( Y - f.hat, psi.scale=psi.scale, alpha=alpha)}
A thin plate spline is now estimated for these data and a new prediction for f is found. This new vector is
used to define new psuedo values. Convergence is achieved when the the subsequent estimates of f.hat do not
change between interations. The advantage of this algorithm is at every step a standard "least squares" thin
plate spline is fit to the psuedo data. Because only the observation vector is changing at each iteration
Some matrix decompositions need only be found once and the computations at each subsequent iteration are efficient.
At convergence there is some asymptotic theory to suggest that the psuedo data can be fit using the least
squares spline and the standard smoothing techinques are valid. For example one can consider looking at the
cross-validation function for the psuedo-data as a robust version to select a smoothing parameter. This approach
is different from the weighted least squared algorithm used in the \code{qsreg} function. Also \code{qsreg} is only
designed to work with 1-d cubic smoothing splines.
The "sigma" function indicating the departure from a pure quadratic loss function has the definition
\preformatted{
qsreg.sigma<-function(r, alpha = 0.5, C = 1)
temp<- ifelse( r< 0, ((1 - alpha) * r^2)/C , (alpha * r^2)/C)
temp<- ifelse( r >C, 2 * alpha * r - alpha * C, temp)
temp<- ifelse( r < -C, -2 * (1 - alpha) * r - (1 - alpha) * C, temp)
temp
}
The derivative of this function "psi" is
\preformatted{
qsreg.psi<- function(r, alpha = 0.5, C = 1)
temp <- ifelse( r < 0, 2*(1-alpha)* r/C, 2*alpha * r/C )
temp <- ifelse( temp > 2*alpha, 2*alpha, temp)
temp <- ifelse( temp < -2*(1-alpha), -2*(1-alpha), temp)
temp
}
Note that if C is very small and if alpha = .5 then psi will essentially be 1 for r > 0 and -1 for r < 0.
The key feature here is that outside a ceratin range the residual is
truncated to a constant value. This is similar
to the Windsorizing operation in classical robust statistics.
Another advantage of the psuedo data algotrithm is that at convergence
one can just apply all the usual
generic functions from Tps to the psuedo data fit. For example,
predict, surface, print, etc. Some additional
components are added to the Krig/Tps object, however, for information
about the iterations and original data.
Note that currently these are not reported in the summaries and
printing of the output object.
}
\value{
A \code{Krig} object with additional components:
\item{yraw}{ Original Y values}
\item{conv.info}{A vector giving the convergence criterion at each
iteration.}
\item{conv.flag}{If TRUE then convergence criterion was less than
the tolerance value.}
\item{psi.scale}{Scaling factor used for the psi.wght function.}
\item{value}{Value of alpha.}
}
\references{
Oh, Hee-Seok, Thomas CM Lee, and Douglas W. Nychka.
"Fast nonparametric quantile regression with arbitrary smoothing methods." Journal of Computational and Graphical Statistics 20.2 (2011): 510-526.
}
\author{
Doug Nychka
}
\seealso{
qsreg
}
\examples{
data(ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]
# Smoothing fixed at 50 df
look1<- QTps( x,y, psi.scale= 15, df= 50)
\dontrun{
# Least squares spline (because scale is so large)
look2<- QTps( x,y, psi.scale= 100, df= 50)
#
y.outlier<- y
# add in a huge outlier.
y.outlier[58]<- 1e5
look.outlier1<- QTps( x,y.outlier, psi.scale= 15, df= 50,
give.warnings= FALSE)
# least squares spline.
look.outlier2<- QTps( x,y.outlier, psi.scale=100 , df= 50,
give.warnings= FALSE)
#
set.panel(2,2)
surface( look1)
title("robust spline")
surface( look2)
title("least squares spline")
surface( look.outlier1, zlim=c(0,250))
title("robust spline w/outlier")
points( rbind(x[58,]), pch="+")
surface( look.outlier2, zlim=c(0,250))
title("least squares spline w/outlier")
points( rbind(x[58,]), pch="+")
set.panel()
}
# some quantiles
look50 <- QTps( x,y, psi.scale=.5,)
look75 <- QTps( x,y,f.start= look50$fitted.values, alpha=.75)
# a simulated example that finds some different quantiles.
\dontrun{
set.seed(123)
N<- 400
x<- matrix(runif( N), ncol=1)
true.g<- x *(1-x)*2
true.g<- true.g/ mean( abs( true.g))
y<- true.g + .2*rnorm( N )
look0 <- QTps( x,y, psi.scale=10, df= 15)
look50 <- QTps( x,y, df=15)
look75 <- QTps( x,y,f.start= look50$fitted.values, df=15, alpha=.75)
}
\dontrun{
# this example tests the quantile estimate by Monte Carlo
# by creating many replicate points to increase the sample size.
# Replicate points are used because the computations for the
# spline are dominated by the number of unique locations not the
# total number of points.
set.seed(123)
N<- 80
M<- 200
x<- matrix( sort(runif( N)), ncol=1)
x<- matrix( rep( x[,1],M), ncol=1)
true.g<- x *(1-x)*2
true.g<- true.g/ mean( abs( true.g))
errors<- .2*(rexp( N*M) -1)
y<- c(matrix(true.g, ncol=M, nrow=N) + .2 * matrix( errors, ncol=M, nrow=N))
look0 <- QTps( x,y, psi.scale=10, df= 15)
look50 <- QTps( x,y, df=15)
look75 <- QTps( x,y, df=15, alpha=.75)
bplot.xy(x,y, N=25)
xg<- seq(0,1,,200)
lines( xg, predict( look0, x=xg), col="red")
lines( xg, predict( look50, x=xg), col="blue")
lines( xg, predict( look75, x=xg), col="green")
}
\dontrun{
# A comparison with qsreg
qsreg.fit50<- qsreg(rat.diet$t,rat.diet$con, sc=.5)
lam<- qsreg.fit50$cv.grid[,1]
df<- qsreg.fit50$cv.grid[,2]
M<- length(lam)
CV<-rep( NA, M)
M<- length( df)
fhat.old<- NULL
for ( k in M:1){
temp.obj<- QTps(rat.diet$t,rat.diet$con, f.start=fhat.old, psi.scale=.5, tolerance=1e-6,
verbose=FALSE, df= df[k],
give.warnings=FALSE)
# avoids warnings from Krig search on lambda
cat(k, " ")
CV[k] <- temp.obj$Qinfo$CV.psuedo
fhat.old<- temp.obj$fitted.values
}
plot( df, CV, type="l", lwd=2)
# psuedo data estimate
points( qsreg.fit50$cv.grid[,c(5,6)], col="blue")
# alternative CV estimate via reweighted LS
points( qsreg.fit50$cv.grid[,c(2,3)], col="red")
}
}
% Add one or more standard keywords, see file 'KEYWORDS' in the
% R documentation directory.
\keyword{spatial}
|