1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
%#
%# fields is a package for analysis of spatial data written for
%# the R software environment.
%# Copyright (C) 2024 Colorado School of Mines
%# 1500 Illinois St., Golden, CO 80401
%# Contact: Douglas Nychka, douglasnychka@gmail.edu,
%#
%# This program is free software; you can redistribute it and/or modify
%# it under the terms of the GNU General Public License as published by
%# the Free Software Foundation; either version 2 of the License, or
%# (at your option) any later version.
%# This program is distributed in the hope that it will be useful,
%# but WITHOUT ANY WARRANTY; without even the implied warranty of
%# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
%# GNU General Public License for more details.
%#
%# You should have received a copy of the GNU General Public License
%# along with the R software environment if not, write to the Free Software
%# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
%# or see http://www.r-project.org/Licenses/GPL-2
%##END HEADER
%##END HEADER
\name{cover.design}
\alias{cover.design}
\title{
Computes Space-Filling "Coverage" designs using Swapping Algorithm
}
\description{
Finds the set of points on a discrete grid (Candidate Set) which
minimize a geometric space-filling criterion. The strength of this method
is that the candidate set can satisfy whatever constraints are important
for the problem.
}
\usage{
cover.design(R, nd, nruns = 1, nn = TRUE, num.nn = 100, fixed = NULL,
scale.type = "unscaled", R.center, R.scale, P = -20, Q = 20,
start = NULL, DIST = NULL, return.grid = TRUE, return.transform =
TRUE, max.loop=20, verbose=FALSE)
}
\arguments{
\item{R}{
A matrix of candidate points to be considered in the design.
Each row is a separate point.
}
\item{nd}{
Number of points to add to the design. If points exist and are to
remain in the design (see "fixed" option), nd is the number of points
to add. If no points are fixed, nd is the design size.
}
\item{nruns}{
The number of random starts to be optimized. Uses random starts unless
"start" is specified. If nruns is great than 1, the final results are
the minimum.
}
\item{nn}{
Logical value specifying whether or not to consider only nearest
neighbors in the swapping algorithm. When nn=FALSE, then the swapping
algorithm will consider all points in the candidate space. When nn=TRUE,
then the swapping algorithm will consider only the num.nn closest
points for possible swapping. The default is to use nearest neighbors
only (nn=TRUE).
}
\item{num.nn}{
Number of nearest-neighbors to search over. The default number is 100.
If nn=F then this argument will be ignore.
}
\item{fixed}{
A matrix or vector specifying points to be forced into the
experimental design. If fixed is a matrix, it gives coordinates of the
fixed points in the design. In this case fixed must be a subset of
R. If fixed is a vector, then fixed gives the row numbers from the
candidate matrix R that identify the fixed points. The number of
points to be generated, nd, is in addition to the number of points
specified by fixed.
}
\item{scale.type}{
A character string that tells how to scale the candidate matrix, R,
before calculating distances. The default is "unscaled", no
transformation is done.
Another option is "range" in which case
variables are scaled to a [0,1] range before applying any distance
functions. Use "unscaled" when all of the columns of R
are commensurate; for example, when R gives x and y in spatial
coordinates. When the columns of R are not in the same units, then it is
generally thought that an appropriate choice of scaling will provide a
better design. This would be the case, for example, for a typical
process optimization. Other choices for scale.type are
"unit.sd", which scales
all columns of R to have 0 mean and unit standard deviation, and
"user", which allows a user specified scaling (see R.center and R.scale
arguments).
}
\item{R.center}{
A vector giving the centering values if
scale.type=\code{user}.
}
\item{R.scale}{
A vector giving the scale values if scale.type=\code{user}.
}
\item{P}{
The "p" exponent of the coverage criterion (see below). It
affects how the distance from a point x to a set of design points D is
calculated. P=1 gives average distance. P=-1 gives harmonic mean distance.
P=-Inf would give minimum distance (not available as a value). As P gets
large and negative, points will tend to be more spread out.
}
\item{Q}{
The "q" exponent of the coverage criterion (see below).It
affects how distances from all points not in the design to points in the
design are averaged. When Q=1, simple averaging of the distances is employed.
Q=Inf (not available as a value) in combination with P=-Inf would give a
classical minimax design.
}
\item{start}{
A matrix or vector giving the initial design from which to start
optimization. If start is a matrix, it gives the coordinates of the
design points. In this case start must be a subset of the candidate set , R matrix.
If start is a
vector, then start gives the row numbers of the initial design based on the rows of the
candidate matrix rows. The
default is to use a random starting design.
}
\item{DIST}{
This argument is only for cover.design.S.
A distance metric in the form of an S function. Default is Euclidean
distance (FIELDS rdist function)
See details
and example below for the correct form.
}
\item{return.grid}{
Logical value that tells whether or not to return the candidate matrix
as an attribute of the computed design. The default is return.grid=T.
If false this just reduces the returned object size.
The candidate matrix is used by plot.spatial.design if it is available.
}
\item{return.transform}{
Logical value that tells whether or not to return the transformation
attributes
of candidate set. The default is return.transform=T.
}
\item{max.loop}{
Maximum number of outer loops in algorithm. This is the maximum number of
passes through the design testing for swaps.
}
\item{verbose}{
If TRUE prints out debugging information.
}
}
\value{
Returns a design object of class \code{spatialDesign}.
Subscripting this object has the same effect as subscripting the first
component (the design). The returned list has the following
components:
\item{design}{
The best design in the form of a matrix.
}
\item{best.id}{
Row numbers of the final design from the original candidate matrix, R.
}
\item{fixed}{
Row numbers of the fixed points from the original candidate matrix, R.
}
\item{opt.crit}{
Value of the optimality criterion for the final design.
}
\item{start.design}{
Row numbers of the starting design from the original candidate matrix, R.
}
\item{start.crit}{
Value of the optimality criterion for the starting design.
}
\item{history}{
The swapping history and corresponding values of the optimality
criterion for the best design.
}
\item{other.designs}{
The designs other than the best design generated when nruns is
greater than 1.
}
\item{other.crit}{
The optimality criteria for the other designs when nrun is greate
than 1.
}
\item{DIST}{
The distance function used in calculating the design criterion.
}
\item{nn}{
Logical value for nearest-neighbor search or not.
}
\item{num.nn}{
The number of nearest neighbor set.
}
\item{grid}{
The matrix R is returned if the argument return.grid=T.
}
\item{transform}{
The type of transformation used in scaling the data and the values
of the centering and scaling constants if the argument return.transform=T.
}
\item{call}{
The calling sequence.
}
\item{P}{
The parameter value for calculating criterion.
}
\item{Q}{
The parameter value for calculating criterion.
}
\item{nhist}{
The number of swaps performed.
}
\item{nloop}{
The number of outer loops required to reach convergence if nloop is less
the max.loop.
}
\item{minimax.crit}{
The minimax design criterion using DIST.
}
\item{max.loop}{
The maximum number of outer loops.
}
}
\details{
OTHER DISTANCE FUNCTIONS:
You can supply an R/S-function to be used as the
distance metric. The expected calling sequence for this distance function
is
function( X1,X2)\{....\} where X1 and X2 are matrices with coordinates as
the rows. The returned value of this function should be the pairwise
distance matrix. If nrow( X1)=m and nrow( X2)=n then the function should
return an m by n matrix of all distances between these two sets of points.
See the example for Manhattan distance below.
The candidate set and DIST function can be flexible and the last
example
below using sample correlation matrices is an example.
COVERAGE CRITERION:
For nd design points in the set D and nc candidate points ci in the
set C,
the coverage criteria is defined as:
M(D,C) = [sum(ci in C) [sum(di in D) (dist(di,ci)**P]**(Q/P)]**(1/Q)
Where P, less than 0, and Q, greater than 0, are parameters.
The algorithm used in
"cover.design" to find the set of nd points in C that minimize this
criterion is an iterative swapping algorithm which will be described
briefly. The resulting design is referred to as a "coverage design"
from among the class of space-filling designs. If fixed points are
specified they are simply fixed in the design set and are not allowed to be
swapped out.
ALGORITHM:
An initial set of nd points is chosen randomly
if no starting
configuration is provided. The nc x nd distance matrix between the
points in C and the points in D is computed, and raised to the power P.
The "row sums" of this matrix are computed. Denote these as rs.i and
the vector of row sums as rs. Using rs, M(D,C) is computed as:
[sum i (rs.i)**(Q/P)]**(1/Q)
Note that if point d.i is "swapped" for point c.j, one must
only recompute 1 column of the original distance matrix, and 1 row.
The row elements not in the ith column will be the same for all j and
so only need computing when the first swapping occurs for each d.i .
Denote the sum of these off-i elements as "newrow(i)". The index is
i here since this is the same for all rows (j=1,...nc).
Thus, for each swap, the row sums vector is updated as
rs(new) = rs(old) - column(i,old) + column(i,new)
And the jth element of rs(new) is replaced by:
rs(new)[j] = column(i,new)[k] + newrow(i)
Finally, M(D,C) is computed for this swap of the ith design point
for the jth candidate point using [2]. The point in C that when
swapped produces the minimum value of M(D,C) replaces d.i.
This is done for all nd points in the design, and is iterated until
M(D,C) does not change.
When the nearest neighbor option is selected, then the points
considered for swapping are limited to the num.nn nearest neighbors
of the current design point.
STABILITY
The algorithm described above is guaranteed to converge. However, upon
convergence, the solution is sensitive to the initial configuration of
points. Thus, it is recommended that multiple optimizations be done (i.e.
set nruns greater than 1 ). Also, the quality of the solution depends on
the density of the points on the region. At the same time, for large
regions , optimization can be computationally prohibitive unless the
nearest neighbor option is employed.
}
\section{References}{
Johnson, M.E., Moore, L.M., and Ylvisaker, D. (1990). Minimax and
maximin distance designs. Journal of Statistical Planning and
Inference 26, 131-148.
SAS/QC Software. Volume 2: Usage and Reference. Version 6. First
Edition (1995). "Proc Optex". SAS Institute Inc. SAS Campus Drive,
}
\seealso{
rdist, rdist.earth
}
\examples{
##
##
# first generate candidate set
set.seed(123) # setting seed so that you get the same thing I do!
test.df <- matrix( runif( 600), ncol=3)
test1.des<-cover.design(R=test.df,nd=10)
summary( test1.des)
plot( test1.des)
#
\dontrun{
candidates<- make.surface.grid( list( seq( 0,5,,20), seq(0,5,,20)))
out<- cover.design( candidates, 15)
# find 10 more points keeping this original design fixed
out3<-cover.design( candidates, 10,fixed=out$best.id)
# see what happened
plot( candidates[,1:2], pch=".")
points( out$design, pch="x")
points( out3$design, pch="o")
# here is a strange graph illustrating the swapping history for the
# the first design. Arrows show the swap done
# at each pass through the design.
h<- out$history
cd<- candidates
plot( cd[,1:2], pch=".")
points( out$design, pch="O", col=2)
points( out$start.design, pch="x", col=5)
arrows(
cd[h[,2],1],
cd[h[,2],2],
cd[h[,3],1],
cd[h[,3],2],length=.1)
text( cd[h[,2],1],
cd[h[,2],2], h[,1], cex=1.0 )
#
# try this out using "Manhattan distance"
# ( distance following a grid of city streets)
dist.man<- function(x1,x2) {
d<- ncol( x1)
temp<- abs(outer( x1[,1], x2[,1],'-'))
for ( k in 2:d){
temp<- temp+abs(outer( x1[,k], x2[,k],'-'))
}
temp }
# use the design from the Euclidean distance as the starting
#configuration.
cover.design( candidates, 15, DIST=dist.man, start= out3$best.id)-> out2
# this takes a while ...
plot( out2$design)
points( out3$design, col=2)
# find a design on the sphere
#
candidates<- make.surface.grid( list( x=seq( -180,180,,20), y= seq( -85,
85,,20)))
out4<-cover.design( candidates, 15, DIST=rdist.earth)
# this takes a while
plot( candidates, pch="+", cex=2)
points(out4$design, pch="o", cex=2, col="blue")
# covering based on correlation for 153 ozone stations
#
data( ozone2)
cor.mat<-cor( ozone2$y, use="pairwise")
cor.dist<- function( x1,x2)
{matrix( 1-cor.mat[ x1,x2], ncol=length(x2))}
#
# find 25 points out of the 153
# here the "locations" are just the index but the distance is
# determined by the correlation function.
#
out5<-cover.design(cbind(1:153),25, DIST= cor.dist, scale.type="unscaled")
plot( ozone2$lon.lat, pch=".")
points( ozone2$lon.lat[out5$best.id,],pch="O", col=4)
#
# this seems a bit strange probably due some funny correlation values
#
# reset panel
set.panel(1,1)
}
}
\keyword{spatial}
% docclass is function
% Converted by Sd2Rd version 1.21.
|