1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
#
# fields is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2022 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka, douglasnychka@gmail.edu,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
##END HEADER
suppressMessages(library(fields))
#
#
# test of fixed lambda case
# Check against linear algebra
#
options( echo=FALSE)
test.for.zero.flag<-1
#cat("A very nasty case with knots and weights",fill=TRUE)
set.seed(123)
x<- matrix( runif( 30), 15,2)
Z<- matrix( rnorm(30), 15,2)
y<- rnorm( 15)*.01 + 5*(x[,1]**3 + (x[,2]-.5)**2) + (Z[,1] +Z[,2])*.001
#weights<- runif(15)*10
# first without knots compare default to fixed
out.new<- Krig( x,y,Z=Z, cov.function=Exp.cov, give.warnings=FALSE)-> out.new
out.new2<- Krig( x,y,Z=Z, cov.function=Exp.cov,
lambda=1)
##########
## compute test using linear algebra
K<- Exp.cov( x,x)
lambda<-1
M<- (lambda* diag(nrow( x)) + K)
T<- cbind( rep(1,15), x, Z)
temp.d<- c(solve( t(T) %*% solve( M)%*%T) %*% t(T)%*% solve( M) %*% y)
temp.c<- solve( M)%*% ( y - T%*% temp.d)
# test for d coefficients
test.for.zero( out.new2$d, temp.d, tag=" d coef")
# test for c coefficents
test.for.zero( out.new2$c, temp.c, tag="c coef" )
####### testing predict function
hold2<- predict( out.new2, x=x, Z=Z, just.fixed=TRUE)
hold3<- predict( out.new2, x=x, Z=Z, drop.Z=TRUE)
hold4<- predict( out.new2, x=x, Z=Z, drop.Z=TRUE, just.fixed=TRUE)
hold<-T%*%temp.d
test.for.zero( hold, hold2, tag="predict for null fixed" )
hold<-T[,1:3]%*%temp.d[1:3] + K %*% temp.c
test.for.zero( hold, hold3, tag="predict for null spatial" )
hold<-T[,1:3]%*%temp.d[1:3]
test.for.zero( hold, hold4, tag="predict for null drift" )
######tests where coefficients are recomputed from object
hold2<- predict( out.new,y=y, lambda=1.0, x=x, Z=Z, just.fixed=TRUE)
hold3<- predict( out.new,y=y, lambda=1.0, x=x, Z=Z, drop.Z=TRUE)
hold4<- predict( out.new, y=y, lambda=1.0, x=x, Z=Z,
drop.Z=TRUE, just.fixed=TRUE)
hold<-T%*%temp.d
test.for.zero( hold, hold2, tag="predict for null fixed" )
hold<-T[,1:3]%*%temp.d[1:3] + K %*% temp.c
test.for.zero( hold, hold3, tag="predict for null spatial" )
hold<-T[,1:3]%*%temp.d[1:3]
test.for.zero( hold, hold4, tag="predict for null drift " )
#
####### tests using predict.se
x<- ChicagoO3$x
y<- ChicagoO3$y
Zcov<- x[,1]**3 + x[,2]**3
tps.fit<-Tps( x,y, scale.type="unscaled", Z= Zcov)
# here is lazy way to get a grid.list
gridList<- fields.x.to.grid( x, nx=20,ny=20)
xg<- make.surface.grid(gridList)
Zcov.grid<- xg[,1]**3 + xg[,2]**3
########### tests on just predict have been commented out to
########### indicate that they are redundant given
########### previous tests however, they could be useful for
########### future debugging ...
# full surface with covariate
# curv.mean1 <- predictSurface(tps.fit, gridlist, extrap = TRUE,
## Z =Zcov.grid, drop.Z = FALSE)$z
# just the spline surface
# curv.mean2 <- predictSurface(tps.fit, gridlist,
# extrap = TRUE,drop.Z=TRUE)$z
# explicitly here is the difference surface of curv.mean1 and curv.mean2
# curv.mean0<- as.surface( gridlist, Zcov.grid* tps.fit$d[4])$z
# test.for.zero( curv.mean1- curv.mean2, curv.mean0)
## new tests
predictSurfaceSE( tps.fit, gridList, extrap=TRUE,
drop.Z=TRUE)$z-> curv.var1
predictSE( tps.fit, xg, drop.Z=TRUE)-> curv.var2
test.for.zero( curv.var1, curv.var2)
# SE with covariates included
predictSE( tps.fit, xg, Z=Zcov.grid, drop.Z=FALSE)**2-> curv.var1
# as.surface( gridlist, curv.var1)$z-> curv.var1
# SE for just the spline part
predictSE( tps.fit, xg, drop.Z=TRUE)**2-> curv.var2
# as.surface( gridlist, curv.var2)$z-> curv.var2
# SE for just the fixed part
predictSE( tps.fit, xg,Z=Zcov.grid, drop.Z=FALSE,
just.fixed=TRUE )**2-> curv.var3
# as.surface( gridlist, curv.var3)$z-> curv.var3
# calculating from more basic functions
## these tests assume that Krig.Amatrix is working correctly!
out<- tps.fit
A<- Krig.Amatrix( tps.fit,x= xg, drop.Z=TRUE)
Sigma<- out$sigmahat*Rad.cov( out$x, out$x, p=2)
S0<- out$sigmahat*Rad.cov(xg, xg, p=2)
S1<- out$sigmahat*Rad.cov(out$x, xg, p=2)
#yhat= Ay
#var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat)
look<- S0 - t(S1)%*% t(A) - A%*%S1 +
A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM))%*% t(A)
look<- diag( look)
test.for.zero(curv.var2 ,look,tag="SE w/o covariate")
A<- Krig.Amatrix( tps.fit,x= xg, drop.Z=FALSE,Z=Zcov.grid)
# see tps.fit$args for value of p
Sigma<- out$sigmahat*Rad.cov( out$x, out$x, p=2)
S0<- out$sigmahat*Rad.cov(xg, xg, p=2)
S1<- out$sigmahat*Rad.cov(out$x, xg, p=2)
#yhat= Ay
#var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat)
look<- S0 - t(S1)%*% t(A) - A%*%S1 +
A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM))%*% t(A)
look<- diag( look)
test.for.zero(curv.var1 ,look,tag="SE with covariate")
A<- Krig.Amatrix( tps.fit,x= xg, drop.Z=FALSE,Z=Zcov.grid, just.fixed=TRUE)
# see tps.fit$args for value of p
Sigma<- out$sigmahat*Rad.cov( out$x, out$x, p=2)
S0<- out$sigmahat*Rad.cov(xg, xg, p=2)
S1<- out$sigmahat*Rad.cov(out$x, xg, p=2)
#yhat= Ay
#var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat)
look<- S0 - t(S1)%*% t(A) - A%*%S1 +
A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM))%*% t(A)
look<- diag( look)
test.for.zero(curv.var3 ,look, tag="SE for fixed part")
cat("All done with Z tests and Krig/Tps including predict and predictSE !",
fill=TRUE)
options( echo=TRUE)
|