File: Krig.se.test.R

package info (click to toggle)
r-cran-fields 16.3.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,972 kB
  • sloc: fortran: 1,021; ansic: 288; sh: 35; makefile: 2
file content (156 lines) | stat: -rw-r--r-- 4,405 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#
# fields  is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2022 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka,  douglasnychka@gmail.edu,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
##END HEADER


suppressMessages(library(fields))

# tests of predictSE
# against direct linear algebra 

#options( echo=FALSE)



x0<- expand.grid( c(-8,-4,0,20,30), c(10,8,4,0))


out<- Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", aRange=50)


# direct calculation
Krig.Amatrix( out, x=x0)-> A
test.for.zero( A%*%ChicagoO3$y, predict( out, x0),tag="Amatrix vs. predict")

Sigma<- out$sigmahat*Exp.cov( ChicagoO3$x, ChicagoO3$x, aRange=50)
S0<- out$sigmahat*c(Exp.cov( x0, x0, aRange=50))
S1<- out$sigmahat*Exp.cov( out$x, x0, aRange=50)

#yhat= Ay
#var( f0 - yhat)=    var( f0) - 2 cov( f0,yhat)+  cov( yhat)

look<- S0 - t(S1)%*% t(A) - A%*%S1 +  
       A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM))%*% t(A)
#
#compare to 
# diagonal elements


test2<- predictSE( out, x= x0) 
test.for.zero( sqrt(diag(  look)), test2,tag="Marginal predictSE")

out2<- Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", aRange=50,
            lambda=out$lambda)

test2<- predictSE( out2, x= x0) 
test.for.zero( sqrt(diag(  look)), test2,tag="Marginal predictSE fixed ")

test<- predictSE( out, x= x0, cov=TRUE)
test.for.zero( look, test,tag="Full covariance predictSE")


# simulation based.

set.seed( 333)

sim.Krig( out, x0,M=4e3)-> test
 # columns are the realizations rows are locations

var(t(test))-> look

predictSE( out, x=x0)-> test2
mean( diag( look)/ test2**2)-> look2
test.for.zero(look2, 1.0, tol=1.5e-2, tag="Marginal standard Cond. Sim.")

predictSE( out, x=x0, cov=TRUE)-> test2

# multiply simulated values by inverse square root of covariance
# to make them white

eigen( test2, symmetric=TRUE)-> hold
hold$vectors%*% diag( 1/sqrt( hold$values))%*% t( hold$vectors)-> hold
cor(t(test)%*% hold)-> hold2
# off diagonal elements of correlations -- expected values are zero. 

abs(hold2[ col(hold2)> row( hold2)])-> hold3

test.for.zero(   mean(hold3), 0, relative=FALSE, tol=.02,
          tag="Full covariance standard Cond. Sim.")


# test of A matrix
#
# first create and check a gridded test case. 


data( ozone2)
as.image(ozone2$y[16,], x= ozone2$lon.lat, ny=24, nx=20, 
          na.rm=TRUE)-> dtemp
#
# A useful disctrtized version of ozone2 data
 
x<- dtemp$xd
y<- dtemp$z[ dtemp$ind]
weights<- dtemp$weights[ dtemp$ind]

Krig( x, y, Covariance="Matern", 
   aRange=1.0, smoothness=1.0, weights=weights) -> out



  set.seed(234)
  ind0<- cbind( sample( 1:20, 5), sample( 1:24, 5))

  x0<- cbind( dtemp$x[ind0[,1]], dtemp$y[ind0[,2]]) 

# an  inline check plot(out$x, cex=2); points( x0, col="red", pch="+",cex=2)

# direct calculation as backup ( also checks weighted case)

Krig.Amatrix( out, x=x0)-> A
test.for.zero( A%*%out$yM, predict( out, x0),tag="Amatrix vs. predict")

Sigma<- out$sigmahat*stationary.cov( 
out$xM, out$xM, aRange=1.0,smoothness=1.0, Covariance="Matern")

S0<- out$sigmahat*stationary.cov( 
x0, x0, aRange=1.0,smoothness=1.0, Covariance="Matern")

S1<- out$sigmahat*stationary.cov(
out$xM, x0, aRange=1.0,smoothness=1.0, Covariance="Matern")



#yhat= Ay
#var( f0 - yhat)=    var( f0) - 2 cov( f0,yhat)+  cov( yhat)
 
look<- S0 - t(S1)%*% t(A) - A%*%S1 +
       A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM) )%*% t(A)

test<- predictSE( out, x0, cov=TRUE)

test.for.zero( c( look), c( test), tag="Weighted case and exact for ozone2 full 
cov", tol=1e-8)


cat("all done testing predictSE.Krig ", fill=TRUE)
options( echo=TRUE)