1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> #
> # fields is a package for analysis of spatial data written for
> # the R software environment.
> # Copyright (C) 2022 Colorado School of Mines
> # 1500 Illinois St., Golden, CO 80401
> # Contact: Douglas Nychka, douglasnychka@gmail.edu,
> #
> # This program is free software; you can redistribute it and/or modify
> # it under the terms of the GNU General Public License as published by
> # the Free Software Foundation; either version 2 of the License, or
> # (at your option) any later version.
> # This program is distributed in the hope that it will be useful,
> # but WITHOUT ANY WARRANTY; without even the implied warranty of
> # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
> # GNU General Public License for more details.
> #
> # You should have received a copy of the GNU General Public License
> # along with the R software environment if not, write to the Free Software
> # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
> # or see http://www.r-project.org/Licenses/GPL-2
> ##END HEADER
> ##END HEADER
>
>
> suppressMessages(library(fields))
>
> # tests of predictSE
> # against direct linear algebra
>
> #options( echo=FALSE)
>
>
>
> x0<- expand.grid( c(-8,-4,0,20,30), c(10,8,4,0))
>
>
> out<- Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", aRange=50)
>
>
> # direct calculation
> Krig.Amatrix( out, x=x0)-> A
> test.for.zero( A%*%ChicagoO3$y, predict( out, x0),tag="Amatrix vs. predict")
Testing: Amatrix vs. predict
PASSED test at tolerance 1e-08
>
> Sigma<- out$sigmahat*Exp.cov( ChicagoO3$x, ChicagoO3$x, aRange=50)
> S0<- out$sigmahat*c(Exp.cov( x0, x0, aRange=50))
> S1<- out$sigmahat*Exp.cov( out$x, x0, aRange=50)
>
> #yhat= Ay
> #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat)
>
> look<- S0 - t(S1)%*% t(A) - A%*%S1 +
+ A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM))%*% t(A)
> #
> #compare to
> # diagonal elements
>
>
> test2<- predictSE( out, x= x0)
> test.for.zero( sqrt(diag( look)), test2,tag="Marginal predictSE")
Testing: Marginal predictSE
PASSED test at tolerance 1e-08
>
> out2<- Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", aRange=50,
+ lambda=out$lambda)
>
> test2<- predictSE( out2, x= x0)
> test.for.zero( sqrt(diag( look)), test2,tag="Marginal predictSE fixed ")
Testing: Marginal predictSE fixed
PASSED test at tolerance 1e-08
>
> test<- predictSE( out, x= x0, cov=TRUE)
> test.for.zero( look, test,tag="Full covariance predictSE")
Testing: Full covariance predictSE
PASSED test at tolerance 1e-08
>
>
> # simulation based.
>
> set.seed( 333)
>
> sim.Krig( out, x0,M=4e3)-> test
> # columns are the realizations rows are locations
>
> var(t(test))-> look
>
> predictSE( out, x=x0)-> test2
> mean( diag( look)/ test2**2)-> look2
> test.for.zero(look2, 1.0, tol=1.5e-2, tag="Marginal standard Cond. Sim.")
Testing: Marginal standard Cond. Sim.
PASSED test at tolerance 0.015
>
> predictSE( out, x=x0, cov=TRUE)-> test2
>
> # multiply simulated values by inverse square root of covariance
> # to make them white
>
> eigen( test2, symmetric=TRUE)-> hold
> hold$vectors%*% diag( 1/sqrt( hold$values))%*% t( hold$vectors)-> hold
> cor(t(test)%*% hold)-> hold2
> # off diagonal elements of correlations -- expected values are zero.
>
> abs(hold2[ col(hold2)> row( hold2)])-> hold3
>
> test.for.zero( mean(hold3), 0, relative=FALSE, tol=.02,
+ tag="Full covariance standard Cond. Sim.")
Testing: Full covariance standard Cond. Sim.
PASSED test at tolerance 0.02
>
>
> # test of A matrix
> #
> # first create and check a gridded test case.
>
>
> data( ozone2)
> as.image(ozone2$y[16,], x= ozone2$lon.lat, ny=24, nx=20,
+ na.rm=TRUE)-> dtemp
> #
> # A useful disctrtized version of ozone2 data
>
> x<- dtemp$xd
> y<- dtemp$z[ dtemp$ind]
> weights<- dtemp$weights[ dtemp$ind]
>
> Krig( x, y, Covariance="Matern",
+ aRange=1.0, smoothness=1.0, weights=weights) -> out
>
>
>
> set.seed(234)
> ind0<- cbind( sample( 1:20, 5), sample( 1:24, 5))
>
> x0<- cbind( dtemp$x[ind0[,1]], dtemp$y[ind0[,2]])
>
> # an inline check plot(out$x, cex=2); points( x0, col="red", pch="+",cex=2)
>
> # direct calculation as backup ( also checks weighted case)
>
> Krig.Amatrix( out, x=x0)-> A
> test.for.zero( A%*%out$yM, predict( out, x0),tag="Amatrix vs. predict")
Testing: Amatrix vs. predict
PASSED test at tolerance 1e-08
>
> Sigma<- out$sigmahat*stationary.cov(
+ out$xM, out$xM, aRange=1.0,smoothness=1.0, Covariance="Matern")
>
> S0<- out$sigmahat*stationary.cov(
+ x0, x0, aRange=1.0,smoothness=1.0, Covariance="Matern")
>
> S1<- out$sigmahat*stationary.cov(
+ out$xM, x0, aRange=1.0,smoothness=1.0, Covariance="Matern")
>
>
>
> #yhat= Ay
> #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat)
>
> look<- S0 - t(S1)%*% t(A) - A%*%S1 +
+ A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM) )%*% t(A)
>
> test<- predictSE( out, x0, cov=TRUE)
>
> test.for.zero( c( look), c( test), tag="Weighted case and exact for ozone2 full
+ cov", tol=1e-8)
Testing: Weighted case and exact for ozone2 full
cov
PASSED test at tolerance 1e-08
>
>
> cat("all done testing predictSE.Krig ", fill=TRUE)
all done testing predictSE.Krig
> options( echo=TRUE)
>
> proc.time()
user system elapsed
2.991 0.107 3.124
|