File: Krig.se.test.Rout.save

package info (click to toggle)
r-cran-fields 16.3.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,972 kB
  • sloc: fortran: 1,021; ansic: 288; sh: 35; makefile: 2
file content (195 lines) | stat: -rw-r--r-- 6,009 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> #
> # fields  is a package for analysis of spatial data written for
> # the R software environment.
> # Copyright (C) 2022 Colorado School of Mines
> # 1500 Illinois St., Golden, CO 80401
> # Contact: Douglas Nychka,  douglasnychka@gmail.edu,
> #
> # This program is free software; you can redistribute it and/or modify
> # it under the terms of the GNU General Public License as published by
> # the Free Software Foundation; either version 2 of the License, or
> # (at your option) any later version.
> # This program is distributed in the hope that it will be useful,
> # but WITHOUT ANY WARRANTY; without even the implied warranty of
> # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
> # GNU General Public License for more details.
> #
> # You should have received a copy of the GNU General Public License
> # along with the R software environment if not, write to the Free Software
> # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
> # or see http://www.r-project.org/Licenses/GPL-2
> ##END HEADER
> ##END HEADER
> 
> 
> suppressMessages(library(fields))
> 
> # tests of predictSE
> # against direct linear algebra 
> 
> #options( echo=FALSE)
> 
> 
> 
> x0<- expand.grid( c(-8,-4,0,20,30), c(10,8,4,0))
> 
> 
> out<- Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", aRange=50)
> 
> 
> # direct calculation
> Krig.Amatrix( out, x=x0)-> A
> test.for.zero( A%*%ChicagoO3$y, predict( out, x0),tag="Amatrix vs. predict")
Testing:  Amatrix vs. predict
PASSED test at tolerance  1e-08
> 
> Sigma<- out$sigmahat*Exp.cov( ChicagoO3$x, ChicagoO3$x, aRange=50)
> S0<- out$sigmahat*c(Exp.cov( x0, x0, aRange=50))
> S1<- out$sigmahat*Exp.cov( out$x, x0, aRange=50)
> 
> #yhat= Ay
> #var( f0 - yhat)=    var( f0) - 2 cov( f0,yhat)+  cov( yhat)
> 
> look<- S0 - t(S1)%*% t(A) - A%*%S1 +  
+        A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM))%*% t(A)
> #
> #compare to 
> # diagonal elements
> 
> 
> test2<- predictSE( out, x= x0) 
> test.for.zero( sqrt(diag(  look)), test2,tag="Marginal predictSE")
Testing:  Marginal predictSE
PASSED test at tolerance  1e-08
> 
> out2<- Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", aRange=50,
+             lambda=out$lambda)
> 
> test2<- predictSE( out2, x= x0) 
> test.for.zero( sqrt(diag(  look)), test2,tag="Marginal predictSE fixed ")
Testing:  Marginal predictSE fixed 
PASSED test at tolerance  1e-08
> 
> test<- predictSE( out, x= x0, cov=TRUE)
> test.for.zero( look, test,tag="Full covariance predictSE")
Testing:  Full covariance predictSE
PASSED test at tolerance  1e-08
> 
> 
> # simulation based.
> 
> set.seed( 333)
> 
> sim.Krig( out, x0,M=4e3)-> test
>  # columns are the realizations rows are locations
> 
> var(t(test))-> look
> 
> predictSE( out, x=x0)-> test2
> mean( diag( look)/ test2**2)-> look2
> test.for.zero(look2, 1.0, tol=1.5e-2, tag="Marginal standard Cond. Sim.")
Testing:  Marginal standard Cond. Sim.
PASSED test at tolerance  0.015
> 
> predictSE( out, x=x0, cov=TRUE)-> test2
> 
> # multiply simulated values by inverse square root of covariance
> # to make them white
> 
> eigen( test2, symmetric=TRUE)-> hold
> hold$vectors%*% diag( 1/sqrt( hold$values))%*% t( hold$vectors)-> hold
> cor(t(test)%*% hold)-> hold2
> # off diagonal elements of correlations -- expected values are zero. 
> 
> abs(hold2[ col(hold2)> row( hold2)])-> hold3
> 
> test.for.zero(   mean(hold3), 0, relative=FALSE, tol=.02,
+           tag="Full covariance standard Cond. Sim.")
Testing:  Full covariance standard Cond. Sim.
PASSED test at tolerance  0.02
> 
> 
> # test of A matrix
> #
> # first create and check a gridded test case. 
> 
> 
> data( ozone2)
> as.image(ozone2$y[16,], x= ozone2$lon.lat, ny=24, nx=20, 
+           na.rm=TRUE)-> dtemp
> #
> # A useful disctrtized version of ozone2 data
>  
> x<- dtemp$xd
> y<- dtemp$z[ dtemp$ind]
> weights<- dtemp$weights[ dtemp$ind]
> 
> Krig( x, y, Covariance="Matern", 
+    aRange=1.0, smoothness=1.0, weights=weights) -> out
> 
> 
> 
>   set.seed(234)
>   ind0<- cbind( sample( 1:20, 5), sample( 1:24, 5))
> 
>   x0<- cbind( dtemp$x[ind0[,1]], dtemp$y[ind0[,2]]) 
> 
> # an  inline check plot(out$x, cex=2); points( x0, col="red", pch="+",cex=2)
> 
> # direct calculation as backup ( also checks weighted case)
> 
> Krig.Amatrix( out, x=x0)-> A
> test.for.zero( A%*%out$yM, predict( out, x0),tag="Amatrix vs. predict")
Testing:  Amatrix vs. predict
PASSED test at tolerance  1e-08
> 
> Sigma<- out$sigmahat*stationary.cov( 
+ out$xM, out$xM, aRange=1.0,smoothness=1.0, Covariance="Matern")
> 
> S0<- out$sigmahat*stationary.cov( 
+ x0, x0, aRange=1.0,smoothness=1.0, Covariance="Matern")
> 
> S1<- out$sigmahat*stationary.cov(
+ out$xM, x0, aRange=1.0,smoothness=1.0, Covariance="Matern")
> 
> 
> 
> #yhat= Ay
> #var( f0 - yhat)=    var( f0) - 2 cov( f0,yhat)+  cov( yhat)
>  
> look<- S0 - t(S1)%*% t(A) - A%*%S1 +
+        A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM) )%*% t(A)
> 
> test<- predictSE( out, x0, cov=TRUE)
> 
> test.for.zero( c( look), c( test), tag="Weighted case and exact for ozone2 full 
+ cov", tol=1e-8)
Testing:  Weighted case and exact for ozone2 full 
cov
PASSED test at tolerance  1e-08
> 
> 
> cat("all done testing predictSE.Krig ", fill=TRUE)
all done testing predictSE.Krig 
> options( echo=TRUE)
> 
> proc.time()
   user  system elapsed 
  2.991   0.107   3.124