1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
#
# fields is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2022 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka, douglasnychka@gmail.edu,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
##END HEADER
suppressMessages(library(fields))
options( echo=FALSE)
test.for.zero.flag<- 1
#
#
# test of off diagonal weight matrix for obs
# Check against linear algebra
#
#cat("A very nasty case with off diagonal weights",fill=TRUE)
set.seed(123)
x<- matrix( runif( 30), 15,2)
y<- rnorm( 15)*.01 + x[,1]**2 + x[,2]**2
#weights<- rep( 1, 15)
weights<- runif(15)*10
# WBW
# double check that just diagonals work.
lambda.test<- .6
Krig( x,y,cov.function=Exp.cov,weights=weights)-> out
Krig( x,y,cov.function=Exp.cov,weights=weights, lambda=lambda.test)-> out2
Krig.coef( out, lambda=lambda.test)-> test
W<- diag( weights)
W2<- diag( sqrt(weights))
K<- Exp.cov(x,x)
M<- (lambda.test*solve(W) + K);T<- fields.mkpoly(x, 2)
temp.d<- c(solve( t(T) %*% solve( M)%*%T) %*% t(T)%*% solve( M) %*%y)
temp.c<- solve( M)%*% (y - T%*% temp.d)
#
# test for d coefficients
test.for.zero( test$d, out2$d, tag=" d coef diag W fixed lam")
test.for.zero( temp.d, out2$d, tag=" d coef diag W")
# test for c coefficents
test.for.zero( test$c, out2$c, tag="c coef diag W fixed lam" )
test.for.zero( temp.c, out2$c, tag="c coef diag W " )
# the full monty
temp.wght<- function(x, alpha=.1){
Exp.cov( x, aRange=alpha) }
Krig( x,y,
cov.function=Exp.cov,weights=weights, wght.function= temp.wght,
)-> out.new
W2<-out.new$W2
W<- out.new$W
test.for.zero( c( W2%*%W2), c( W), tag=" sqrt of W")
Krig( x,y, cov.function=Exp.cov,weights=weights, W= out.new$W)-> temp
test.for.zero( predict(temp, y= y), predict(out.new,y=y),
tag=" Test of passing W explicitly")
K<- Exp.cov(x,x); lambda.test<- .6;
M<- (lambda.test*solve(W) + K);T<- fields.mkpoly(x, 2)
temp.d<- c(solve( t(T) %*% solve( M)%*%T) %*% t(T)%*% solve( M) %*%y)
temp.c<- solve( M)%*% (y - T%*% temp.d)
#
Krig.coef( out.new,lambda=lambda.test )-> out2
test.for.zero( temp.d, out2$d, tag=" d coef full W")
# test for c coefficents
test.for.zero( temp.c, out2$c, tag="c coef full W" )
####
### testing the GCV function
lambda<- out.new$lambda
Krig.Amatrix( out.new, lambda=lambda)-> Alam
test.for.zero( Alam%*%y , predict(out.new), tag="A matrix")
N<- length( y)
test<- sum( diag( Alam))
# compare to
test2<- out.new$eff.df
test.for.zero( test,test2, tag=" check trace of A")
Krig.fgcv.one( lam=lambda, out.new)-> test
# compare to
test2<- (1/N)*sum(
(out.new$W2%*%(y - c(Alam%*% y) ))**2
) / (1- sum(diag( Alam))/N)**2
test.for.zero( test,test2,tol=.5e-7, tag="GCV one" )
cat( "all done testing off diag W case", fill=TRUE)
options( echo=TRUE)
|