File: Likelihood.test.R

package info (click to toggle)
r-cran-fields 16.3.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,972 kB
  • sloc: fortran: 1,021; ansic: 288; sh: 35; makefile: 2
file content (141 lines) | stat: -rw-r--r-- 4,762 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#
# fields  is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2022 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka,  douglasnychka@gmail.edu,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
##END HEADER



# this is a test script to verify the likelihood computations are 
# correct with the eigen decomposition format used in Krig
# see Krig.flplike for the concise computation.
#  

suppressMessages(library(fields))

options( echo=FALSE)
test.for.zero.flag<- 1

# utility function foor testing 
REML.test <- function(x, y, rho, sigma2, theta, nu = 1.5) {
  Tmatrix <- fields.mkpoly(x, 2)
  qr.T <- qr(Tmatrix)
  N <- length(y)
  Q2 <- qr.yq2(qr.T, diag(1, N))
  ys <- t(Q2) %*% y
  N2 <- length(ys)
  A <- (rho * Matern(rdist(x, x), range = theta, smoothness = nu) + 
          sigma2 * diag(1, N))
  A <- t(Q2) %*% A %*% Q2
  Ac <- chol(A)
  w <- backsolve(Ac, ys, transpose = TRUE)
  REML.like <- (N2/2) * log(2 * pi) + (1/2) * 2 * sum(log(diag(Ac))) + 
    (1/2) * t(w) %*% w
  REML.like <- -1 * REML.like
  ccoef <- rho * Q2 %*% solve(A) %*% ys
  return(list(REML.like = REML.like, A = A, ccoef = ccoef, 
              quad.form = t(w) %*% w, rhohat = (t(w) %*% w/N2) * rho, 
              det = 2 * sum(log(diag(Ac))), N2 = N2))
}

data( ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]
is.good <- !is.na( y)
x<- x[is.good,]
y<- y[is.good]

aRange<- 2.0

# check log likelihood calculation
  nu<- 1.5
  lambda<- .2
  out<- mKrig( x,y, aRange=aRange,Covariance="Matern", smoothness=nu, lambda=lambda) 

# peg sigma and tau as MLEs from mKrig
  sigma <- out$summary["sigma2"]
  tau2<- sigma*lambda
  N<- length( y)
  dd<- rdist( x,x)
  M<-  sigma* Matern( dd, range= aRange, smoothness=nu) + tau2* diag( 1, N)
  X<- fields.mkpoly( x, 2)
  Mi<- solve( M)
  betahat<-  solve(t(X)%*%Mi%*%X)%*% t(X)%*% Mi%*% y
  res<- y - X%*%betahat
  ccoef<- ( Mi%*% ( res))*sigma

# sanity check that estimates are the same
  test.for.zero( ccoef, out$c.coef, tag="check ccoef")

# find full log likelihood
  chol(M)-> cM
  lLike<-  -(N/2)*log(2*pi) - (1/2)* (2*sum( log( diag(cM)))) - (1/2)* t(res)%*% Mi %*% res
  test.for.zero( lLike, out$summary["lnProfileLike.FULL"], tag="llike profile from mKrig")
  
# formula for full likelihood using peices from mKrig
# lLike.test<- -(N/2)*log(2*pi) - (1/2)* out$lnDetCov - (1/2)*(N)*log( sigma) - (1/2)*out$quad.form/sigma
#  test.for.zero( lLike, lLike.test, tag="llike full verses sigmahat")
  
# REML check
  nu<- 1.5
  aRange<- .6
  obj<- Krig( x,y, aRange=aRange,Covariance="Matern", smoothness=nu )

# sanity check that c coefficients agree with Krig
  sigma<- 500
  lambda<- .2
  tau2<- lambda*sigma

  hold<- REML.test( x,y,sigma, tau2, aRange, nu=1.5)
  ccoef2<- Krig.coef( obj, lambda)$c
  test.for.zero( hold$ccoef, ccoef2, tag="ccoefs")

# check RSS with Krig decomposition.
  RSS1<- sum( (lambda*ccoef2)**2)
  lD <- obj$matrices$D * lambda
  RSS2 <- sum(((obj$matrices$u * lD)/(1 + lD))^2) 
  test.for.zero( RSS2, RSS1, tag=" RSS using matrices")

# check quadratic form with Krig
  D.temp<- obj$matrices$D[  obj$matrices$D>0]
  A3test<- (1/lambda)* obj$matrices$V %*% diag((D.temp*lambda)/ (1 +D.temp*lambda) )%*% t( obj$matrices$V)
  test.for.zero(solve(A3test), hold$A/sigma, tol=5e-8)
  Quad3<-   sum( D.temp*(obj$matrices$u[obj$matrices$D>0])^2/(1+lambda*D.temp))

  test.for.zero( hold$quad.form, Quad3/sigma, tag="quad form")

# test determinants
  N2<- length( D.temp)
  det4<- -sum( log(D.temp/(1 + D.temp*lambda)) )
  det1<- sum( log(eigen( hold$A/sigma)$values)) 
  test.for.zero( det1, det4, tag="det" )

# test REML Likelihood
  lLikeREML.test<--1*( (N2/2)*log(2*pi) - (1/2)*(sum( log(D.temp/(1 + D.temp*lambda)) ) - N2*log(sigma)) +
                                      (1/2)*sum( lD*(obj$matrices$u)^2/(1+lD)) /(lambda*sigma) )

test.for.zero( hold$REML.like, lLikeREML.test, tag="REML using matrices")




cat("all done with likelihood  tests", fill=TRUE)
options( echo=TRUE)