1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
#
# fields is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2022 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka, douglasnychka@gmail.edu,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
##END HEADER
suppressMessages(library(fields))
options(echo=FALSE)
test.for.zero.flag<- 1
data(ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]
temp<- Rad.cov( x,x, p=2)
temp2<- RadialBasis( rdist( x,x), M=2, dimension=2)
temp3<- rdist( x,x)
temp3 <- ifelse( abs(temp3) < 1e-14, 0,log( temp3)*(temp3^2) )
temp3<- radbas.constant( 2,2)*temp3
test.for.zero( temp, temp2, tag="Tps radial basis function 2d")
test.for.zero( temp, temp3, tag="Tps radial basis function 2d")
test.for.zero( temp2,temp3, tag="Tps radial basis function 2d")
set.seed( 123)
xtemp<- matrix( runif( 40*3), ncol=3)
temp<- Rad.cov( xtemp,xtemp, p= 2*4-3)
temp2<- RadialBasis( rdist( xtemp,xtemp), M=4, dimension=3)
temp3<- rdist( xtemp,xtemp)
temp3 <- ifelse( abs(temp3) < 1e-14, 0, temp3^(2*4 -3) )
temp3<- radbas.constant( 4,3)*temp3
test.for.zero( temp, temp2, tag="Tps radial basis function 3d")
test.for.zero( temp, temp3, tag="Tps radial basis function 3d")
test.for.zero( temp2,temp3, tag="Tps radial basis function 3d")
#### testing multiplication of a vector
#### mainly to make the FORTRAN has been written correctly
#### after replacing the ddot call with an explicit do loop
set.seed( 123)
C<- matrix( rnorm( 10*5),10,5 )
x<- matrix( runif( 10*2), 10,2)
temp3<- rdist( x,x)
K<- ifelse( abs(temp3) < 1e-14, 0,log( temp3)*(temp3^2) )
K<- K * radbas.constant( 2,2)
test.for.zero( Rad.cov( x,x,m=2, C=C) , K%*%C, tol=1e-10)
set.seed( 123)
C<- matrix( rnorm( 10*5),10,5 )
x<- matrix( runif( 10*3), 10,3)
temp3<- rdist( x,x)
K<- ifelse( abs(temp3) < 1e-14, 0,(temp3^(2*4-3)) )
K<- K * radbas.constant( 4,3)
test.for.zero( Rad.cov( x,x,m=4, C=C) , K%*%C,tol=1e-10)
##### testing derivative formula
set.seed( 123)
C<- matrix( rnorm( 10*1),10,1 )
x<- matrix( runif( 10*2), 10,2)
temp0<- Rad.cov( x,x, p=4, derivative=1, C=C)
eps<- 1e-6
temp1<- (
Rad.cov( cbind(x[,1]+eps, x[,2]),x, p=4, derivative=0, C=C)
- Rad.cov( cbind(x[,1]-eps, x[,2]),x, p=4, derivative=0, C=C) )/ (2*eps)
temp2<- (
Rad.cov( cbind(x[,1], x[,2]+eps),x, p=4, derivative=0, C=C)
- Rad.cov( cbind(x[,1], x[,2]-eps),x , p=4,derivative=0,C=C) )/ (2*eps)
test.for.zero( temp0[,1], temp1, tag=" der of Rad.cov", tol=1e-6)
test.for.zero( temp0[,2], temp2, tag=" der of Rad.cov", tol=1e-6)
# comparing Rad.cov used by Tps with simpler function called
# by stationary.cov
set.seed( 222)
x<- matrix( runif( 10*2), 10,2)
C<- matrix( rnorm( 10*3),10,3 )
temp<- Rad.cov( x,x, p=2, C=C)
temp2<- RadialBasis( rdist( x,x), M=2, dimension=2)%*%C
test.for.zero( temp, temp2)
#### Basic matrix form for Tps as sanity check
data("ozone2")
s<- ozone2$lon.lat
y<- ozone2$y[16,]
good<- !is.na( y)
s<- s[good,]
y<- y[good]
data(ozone2)
obj<-Tps( s,y, scale.type="unscaled", with.constant=FALSE)
# now work out the matrix expressions explicitly
lam.test<- obj$lambda
N<-length(y)
Tmatrix<- cbind( rep( 1,N), s)
D<- rdist( s,s)
R<- ifelse( D==0, 0, D**2 * log(D))
A<- rbind(
cbind( R+diag(lam.test,N), Tmatrix),
cbind( t(Tmatrix), matrix(0,3,3)))
hold<-solve( A, c( y, rep(0,3)))
c.coef<- hold[1:N]
d.coef<- hold[ (1:3)+N]
zhat<- R%*%c.coef + Tmatrix%*% d.coef
test.for.zero( zhat, obj$fitted.values, tag="Tps 2-d m=2 sanity check")
# out of sample prediction
snew<- rbind( c( -87,41),
c( -81,44)
)
T1<- cbind( 1, snew)
D<- rdist( snew,s)
R1<- ifelse( D==0, 0, D**2 * log(D))
z1<- R1%*%c.coef + T1%*% d.coef
test.for.zero( z1, predict( obj, x=snew), tag="Tps 2-d m=2 sanity predict")
#### test Tps verses Krig note scaling must be the same
out<- Tps( s,y)
out2<- Krig( s,y, Covariance="RadialBasis",
M=2, dimension=2, scale.type="range", method="GCV")
test.for.zero( predict(out), predict(out2), tag="Tps vs. Krig w/ GCV")
# test for fixed lambda
test.for.zero(
predict(out,lambda=.1), predict(out2, lambda=.1),
tag="Tps vs. radial basis w Krig")
#### testing derivative using predict function
set.seed( 233)
x<- matrix( (rnorm( 1000)*2 -1), ncol=2)
y<- (x[,1]**2 + 2*x[,1]*x[,2] - x[,2]**2)/2
out<- Tps( x, y, scale.type="unscaled")
xg<- make.surface.grid( list(x=seq(-.7,.7,,10), y=seq(-.7,.7,,10)) )
test<- cbind( xg[,1] + xg[,2], xg[,1] - xg[,2])
# test<- xg
look<- predictDerivative.Krig( out, x= xg)
test.for.zero( look[,1], test[,1], tol=1e-3)
test.for.zero( look[,2], test[,2], tol=1e-3)
############################################################
### testing Tps version using spatialProcess and Tps.cov
############################################################
set.seed(222)
n<- 50
x1<- cbind( runif(n), runif(n))*100
x2<- cbind( runif(5), runif(5))
#x2<- x1
cardinalX<- cbind( runif(3), runif(3))
m<- 2
# simple check of marginal variances
look<- Tps.cov( x1,x1,cardinalX, m=m)
look2<- Tps.cov( x1,cardinalX=cardinalX, m=m, marginal=TRUE)
test.for.zero(diag(look), look2, tag="Tps.cov marginal" )
## comparing with the Tps function
data("ozone2")
s<- ozone2$lon.lat
y<- ozone2$y[16,]
good<- !is.na( y)
s<- s[good,]
y<- y[good]
##### Tps used as benchmark
out0<- Tps( s,y, scale.type ="unscaled", method="REML")
lambdaHat<- out0$lambda.est[6,1]
fHat<- predict( out0)
cardinalX<- s[1:3,]
out2<- mKrig( s,y, cov.function="Tps.cov",
cov.args= list( cardinalX=cardinalX,
aRange=NA),
m=2,lambda=lambdaHat
)
# should be invariant to cardinal points and not need aRange =NA
# defaults supplied by spatialProcessSetDefaults when detecting Tps.cov
out3<- spatialProcess( s, y, cov.function="Tps.cov",
mKrig.args = list(m=2, NtrA = 200),
lambda=lambdaHat )
out4<- spatialProcess( s, y, cov.function="Tps.cov",
cov.args= list(
aRange=NA),
#REML=TRUE,
verbose=FALSE, gridN=50
)
test.for.zero(fHat, predict( out2, s), tag="Tps vs spatialProcess" )
# other parameters and likelihood
test.for.zero(out0$tauHat.MLE,
out3$summary["tau"],tag="Tps vs spatialProcess tau" )
test.for.zero(fHat, predict( out3, s),
tag="Tps vs spatialProcess default" )
# eff.df exact for spatialProcess because nTrA is larger than
# sample size.
test.for.zero( out0$eff.df, out3$summary["eff.df"],
tag="Eff.df Tps vs spatialProcess")
# look at prediction standard error computation.
SE0<- predictSE( out0, s)
SE3<- predictSE( out3,s)
test.for.zero(SE0, SE3, tag="Tps vs spatialProcess SE")
# compare REML for Tps and spatialProcess
# test.for.zero(out0$lambda.est["REML", "-lnLike Prof"],
# out4$summary["lnProfileREML.FULL"],
# tag="Tps vs spatialProcess REML log like" )
# test.for.zero(out0$lambda.est["REML", "lambda"],
# out4$summary["lambda"],
# tag="Tps vs spatialProcess w REML lambda Hat" )
#
gridList<- fields.x.to.grid( s, nx=20, ny=20)
sGrid<- make.surface.grid( gridList)
fHatGrid0<- predict( out0, sGrid)
fHatGrid3<- predict( out3,sGrid)
test.for.zero(fHatGrid0,fHatGrid3,
tag="Tps vs spatialProcess predictions on a grid")
fHatGrid0SE<- predict( out0, sGrid)
fHatGrid3SE<- predict( out3,sGrid)
test.for.zero(fHatGrid0SE,fHatGrid3SE,
tag="Tps vs spatialProcess SE predictions on a grid")
options( echo=TRUE)
cat("all done testing Tps and spatialProcess with Tps.cov", fill=TRUE)
#
# lambda0<- out0$lambda.est["REML", "lambda"]
#
# Krig.flplike(out0, lambda0)
|