1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
#
# fields is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2022 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka, douglasnychka@gmail.edu,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
##END HEADER
suppressMessages(library(fields))
options( echo=FALSE)
test.for.zero.flag<- 1
data(ozone2)
y<- ozone2$y[16,]
x<- ozone2$lon.lat
#
# Omit the NAs
good<- !is.na( y)
x<- x[good,]
y<- y[good]
x1<- x[1:5,]
x2<- x[6:11,]
look<- exp(-1*rdist(x1,x2)/4)
look2<- stationary.cov( x1,x2, aRange=4)
look3<- Exp.cov( x1, x2, aRange=4.0)
test.for.zero( look, look2)
test.for.zero( look, look3)
set.seed(122)
C<- rnorm( nrow(x2))
look<- exp(-1*rdist(x1,x2)/4)%*%C
look2<- stationary.cov( x1,x2, aRange=4, C=C)
look3<- Exp.cov( x1, x2, aRange=4.0, C=C)
test.for.zero( look, look2)
test.for.zero( look, look3)
#### check tranformation of coordinates
V<- matrix( c(2,1,0,4), 2,2)
Vi<- solve( V)
u1<- t(Vi%*% t(x1))
u2<- t(Vi%*% t(x2))
look<- exp(-1*rdist(u1,u2))
look2<- stationary.cov( x1,x2, V= V)
test.for.zero( look, look2)
look<- Wendland(rdist(u1,u2), k=3, dimension=2)
look2<- stationary.cov( x1,x2, V= V, Covariance = "Wendland",
k=3, dimension=2)
test.for.zero( look, look2)
### check tapering of covariances
x1<- x[1:5,]
x2<- x[2:6,]
V<- matrix( c(2,1,0,4), 2,2)
Vi<- solve( V)
u1<- x1
u2<- x2
look1a<- exp(-1*rdist(u1,u2))
look1b<- Wendland(rdist(u1,u2),
k=3, dimension=2, aRange= 1)
look1<- look1a*look1b
look2<- stationary.taper.cov( x1,x2, aRange=1,
Taper.args=list( aRange=1,k=3, dimension=2), verbose=FALSE)
test.for.zero( look1, as.matrix(look2))
u1<- t(Vi%*% t(x1))
u2<- t(Vi%*% t(x2))
look1a<- exp(-1*rdist(u1,u2))
look1b<- Wendland(rdist(u1,u2),
k=3, dimension=2, aRange= 1.5)
look1<- look1a*look1b
look2<- stationary.taper.cov( x1,x2,V=V,
Taper.args=list( aRange=1.5,k=3, dimension=2), verbose=FALSE)
test.for.zero( look1, as.matrix(look2))
u1<- t(Vi%*% t(x1))
u2<- t(Vi%*% t(x2))
look1a<- Matern(rdist(u1,u2), smoothness=1.5)
look1b<- Wendland(rdist(u1,u2),
k=3, dimension=2, aRange= 1.5)
look1<- look1a*look1b
look2<- stationary.taper.cov( x1,x2,V=V,Covariance=Matern, smoothness=1.5,
Taper.args=list( aRange=1.5,k=3, dimension=2), verbose=FALSE)
test.for.zero( look1, as.matrix(look2))
# some tests of great circle distance
stationary.taper.cov( x[1:3,],x[1:10,] , aRange=200, Taper.args=
list(k=2,aRange=300, dimension=2),
Dist.args=list( method="greatcircle") )-> temp
# temp is now a tapered 3X10 cross covariance matrix in sparse format.
# should be identical to
# the direct matrix product
temp2<- Exponential( rdist.earth(x[1:3,],x[1:10,]), aRange=200) *
Wendland(rdist.earth(x[1:3,],x[1:10,]), aRange= 300, k=2, dimension=2)
test.for.zero( as.matrix(temp), temp2, tol=2e-6, tag="taper with great circle")
# example of calling the taper version directly
# Note that default covariance is exponential and default taper is
# Wendland (k=2).
stationary.taper.cov( x[1:3,],x[1:10,] , aRange=1.5, Taper.args=
list(k=2,aRange=2.0, dimension=2) )-> temp
# temp is now a tapered 5X10 cross covariance matrix in sparse format.
# should be identical to
# the direct matrix product
temp2<- Exp.cov( x[1:3,],x[1:10,], aRange=1.5) *
Wendland(rdist(x[1:3,],x[1:10,]),
aRange= 2.0, k=2, dimension=2)
test.for.zero( as.matrix(temp), temp2, tag= "high level test of taper cov")
stationary.taper.cov( x[1:3,],x[1:10,] , range=1.5,
Taper.args= list(k=2,aRange=2.0,
dimension=2) )-> temp
test.for.zero( as.matrix(temp), temp2, tag= "high level test of taper cov")
cat("end tests of V argument in covariances", fill=TRUE)
|