File: derivative.test.R

package info (click to toggle)
r-cran-fields 16.3.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,972 kB
  • sloc: fortran: 1,021; ansic: 288; sh: 35; makefile: 2
file content (207 lines) | stat: -rw-r--r-- 7,698 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#
# fields  is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2022 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka,  douglasnychka@gmail.edu,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
##END HEADER

#library( fields, lib.loc="lib.test")

suppressMessages(library(fields))
options(echo=FALSE)
test.for.zero.flag<- 1

DD<- cbind( seq(.01,2,,50))
look2<- RadialBasis(DD,  dimension=2,M=3,derivative=1) 

look1<- ( RadialBasis(DD+1e-5, dimension=2,M=3,derivative=0 )
-  RadialBasis(DD-1e-5, dimension=2,M=3,derivative=0))/2e-5

test.for.zero( look1, look2,tol=1e-6, tag="radial basis function exact" )


  set.seed( 234)
  x<- matrix( runif(10), ncol=2)
  ctest<- rep(0,5)
  ctest[3]<- 1
  stationary.cov( x,x, Covariance="RadialBasis", dimension=2,M=3,derivative=0)-> look0
  RadialBasis( rdist(x,x), dimension=2,M=3,derivative=0)-> sanity.look
  test.for.zero( look0, sanity.look, tag="sanity test of stationary.cov with RadialBasis")

  Rad.cov(x,x,p= (2*3 -2))-> look1
  test.for.zero( sanity.look, look1, tag="sanity test of Rad.cov")

  sanity.look%*% ctest->look0
  stationary.cov( x,x, Covariance="RadialBasis", dimension=2,M=3,
                                  derivative=0, C=ctest)-> look
  test.for.zero( look0, look, tag="stat.cov Radbas C multiply")
  Rad.cov(x,x,p= (2*3 -2), C=ctest)-> look1
  test.for.zero( look0, look1, tag="Rad.cov C multiply")


############################ end of radial basis


DD<- cbind( seq(.01,2,,50))
look2<- Wendland(DD, aRange=1.0, dimension=2,k=3,derivative=1) 

look1<- (Wendland(DD+1e-5, aRange=1.0, dimension=2,k=3)
- Wendland(DD-1e-5, aRange=1.0, dimension=2,k=3))/2e-5

test.for.zero( look1, look2,tol=1e-6)



look2<- Wendland(DD, aRange=1.5, dimension=2,k=3,derivative=1) 

look1<- (Wendland(DD+1e-5, aRange=1.5, dimension=2,k=3)
- Wendland(DD-1e-5, aRange=1.5, dimension=2,k=3))/2e-5

test.for.zero( look1, look2,tol=1e-6, tag="Wendland exact")

x<- seq( -1,1,,5)

ctest<- rep(0,5)
ctest[3]<- 1

wendland.cov( x,x, k=2, aRange=.75)-> look0
Wendland( rdist(x,x)/.75, k=2, dimension=1)-> sanity.look
test.for.zero( look0, sanity.look)

look0%*% ctest->look0

wendland.cov( x,x, k=2, aRange=.75, C=ctest, derivative=0)-> look

test.for.zero( look0, look, tag="Wendland C multiply")


wendland.cov( x,x, k=2, aRange=1.0, C=ctest, derivative=1)-> look

wendland.cov( x+1e-5, x, k=2, aRange=1.0, C=ctest)-
wendland.cov( x-1e-5, x, k=2, aRange=1.0, C=ctest)-> look2
look2<- look2/2e-5
 
test.for.zero( look, look2,tol=1e-7, tag="Wendland.cov aRange=1.0")


wendland.cov( x,x, k=2, aRange=.75, C=ctest, derivative=1)-> look
wendland.cov( x+1e-5, x, k=2, aRange=.75, C=ctest)-
wendland.cov( x-1e-5, x, k=2, aRange=.75, C=ctest)-> look2
look2<- look2/2e-5
test.for.zero( look, look2,tol=1e-7, tag="Wendland.cov aRange=.75")


stationary.cov( x,x, Covariance="Wendland", dimension=1,
                k=2, aRange=1.0, C=ctest, derivative=0)-> look
look0<- Wendland( rdist(x,x), k=2, dimension=1)%*%ctest
test.for.zero( look0, look, tag="stationary.cov and exact C multiply for Wendland")

wendland.cov( x,x, k=2,C=ctest, aRange=1.0)-> look
look0<- Wendland( rdist(x,x), k=2, dimension=1)%*%ctest
test.for.zero( look0, look, tag="  Wendland C multiply")

####### 2 -d quadratic surface 

x<- make.surface.grid( list(x=seq( -1,1,,20), y=seq( -1,1,,20)))
y<- (.123*x[,1] + .234*x[,2])
obj<- mKrig( x,y, lambda=0, cov.function="wendland.cov", k=3, aRange=.4)

xp<- make.surface.grid( list(x=seq(-.5,.5,,24),y= seq( -.5,.5,,24)) )
predict( obj, xp, derivative=1)-> outd
test.for.zero( outd[,1],.123, tag="2-d derivs from wend.cov/mKrig")
test.for.zero( outd[,2],.234)


#%%%%%%%% repeat to check derivatives in stationary.cov

x<- make.surface.grid( list(x=seq( -1,1,,20), y=seq( -1,1,,20)))
y<- (.123*x[,1] + .234*x[,2])
obj<- mKrig( x,y, lambda=0, cov.function="stationary.cov",
            cov.args=list(k=3, aRange=.2, dimension=2, Covariance="Wendland"))

xp<- make.surface.grid( list(x=seq(-.5,.5,,24),y= seq( -.5,.5,,24)) )
predict( obj, xp, derivative=1)-> outd
test.for.zero( outd[,1],.123, tag="2-d derivs from stationary-wend/mKrig")
test.for.zero( outd[,2],.234)


############## quadratic surface
x<- make.surface.grid( list(x=seq( -1,1,,20), y=seq( -1,1,,20)))
y<- (x[,1]**2 - 2* x[,1]*x[,2] +  x[,2]**2)/2

############## wendland.cov
obj<- mKrig( x,y, lambda=0, cov.function="wendland.cov", k=3, aRange=.8)
xp<- make.surface.grid( list(x=seq(-.5,.5,,24),y= seq( -.5,.5,,24)) )
true<- cbind( xp[,1] -  xp[,2], xp[,2]- xp[,1])
############## wendland.cov
predict( obj, xp, derivative=1)-> outd
rmse<-sqrt(mean((true[,1] - outd[,1])**2))/sqrt(mean(true[,1]**2))
test.for.zero( rmse,0, tol=5e-3,relative=FALSE, tag="wendland.cov quad 2-d")

############## stationary cov
x<- make.surface.grid( list(x=seq( -1,1,,20), y=seq( -1,1,,20)))
y<- (x[,1]**3 +  x[,2]**3)
obj<- mKrig( x,y, lambda=0, cov.function="stationary.cov",
            cov.args=list(k=3, aRange=.8, dimension=2, Covariance="Wendland"))

xp<- make.surface.grid( list(x=seq(-.5,.5,,24),y= seq( -.5,.5,,24)) )
true<- cbind( 3*xp[,1]**2 , 3*xp[,2]**2)
predict( obj, xp, derivative=1)-> outd2
rmse<-sqrt(mean((true[,1] - outd2[,1])**2))/sqrt(mean(true[,1]**2))
test.for.zero( rmse,0, tol=1e-2,relative=FALSE,
                        tag="stationary.cov/Wendland cubic 2-d")

############## stationary cov  with radial basis
x<- make.surface.grid( list(x=seq( -1,1,,20), y=seq( -1,1,,20)))
y<- (x[,1]**3 +  x[,2]**3)
obj<- Krig( x,y,  cov.function="stationary.cov", m=3,
            cov.args=list(M=3, dimension=2, Covariance="RadialBasis"))

xp<- make.surface.grid( list(x=seq(-.5,.5,,24),y= seq( -.5,.5,,24)) )
true<- cbind( 3*xp[,1]**2 , 3*xp[,2]**2)
predictDerivative.Krig( obj, xp)-> outd2
look<- as.surface( xp, outd2[,1])
rmse<-sqrt(mean((true[,1] - outd2[,1])**2))/sqrt(mean(true[,1]**2))
test.for.zero( rmse,0, tol=5e-3,relative=FALSE,
                        tag="stationary.cov/Wendland cubic 2-d")


#########################
  x<- make.surface.grid( list(x=seq( -1,1,,20), y=seq( -1,1,,20)))
  y<- (x[,1]**3 +  x[,2]**3)

  obj<- mKrig( x,y, lambda=0, cov.function="wendland.cov", k=3, 
               V=diag(c( 1.1,1.1) ))
  xp<- make.surface.grid( list(x=seq(-.5,.5,,24),y= seq( -.5,.5,,24)) )
  predict( obj, xp, derivative=1)-> outd
  true<- cbind( 3*xp[,1]**2 , 3*xp[,2]**2)
  rmse<-sqrt(mean((true[,1] - outd[,1])**2)/mean(true[,1]**2))
  test.for.zero( rmse,0, tol=5e-3,relative=FALSE)

  obj<- Tps( x,y,lambda=0)
  predictDerivative.Krig( obj, xp, derivative=1)-> outd
  look<- as.surface( xp, outd[,1])
  rmse<-sqrt(mean((true[,1] - outd[,1])**2)/mean(true[,1]**2))
  test.for.zero( rmse,0, tol=2e-4,relative=FALSE, tag="Tps derivative x1")
  rmse<-sqrt(mean((true[,2] - outd[,2])**2)/mean(true[,2]**2))
  test.for.zero( rmse,0, tol=2e-4,relative=FALSE, tag="Tps derivative x2")

cat("done with dervative tests", fill=TRUE)
options( echo=TRUE)