File: mKrig.parameters.test.Rout.save

package info (click to toggle)
r-cran-fields 16.3.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,972 kB
  • sloc: fortran: 1,021; ansic: 288; sh: 35; makefile: 2
file content (305 lines) | stat: -rw-r--r-- 9,518 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> #
> # fields  is a package for analysis of spatial data written for
> # the R software environment.
> # Copyright (C) 2022 Colorado School of Mines
> # 1500 Illinois St., Golden, CO 80401
> # Contact: Douglas Nychka,  douglasnychka@gmail.edu,
> #
> # This program is free software; you can redistribute it and/or modify
> # it under the terms of the GNU General Public License as published by
> # the Free Software Foundation; either version 2 of the License, or
> # (at your option) any later version.
> # This program is distributed in the hope that it will be useful,
> # but WITHOUT ANY WARRANTY; without even the implied warranty of
> # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
> # GNU General Public License for more details.
> #
> # You should have received a copy of the GNU General Public License
> # along with the R software environment if not, write to the Free Software
> # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
> # or see http://www.r-project.org/Licenses/GPL-2
> ##END HEADER
> ##END HEADER
> 
> 
> suppressMessages(library(fields))
> #options( echo=FALSE)
> test.for.zero.flag<- 1
> data(ozone2)
> y<- ozone2$y[16,]
> x<- ozone2$lon.lat
> #
> # Omit the NAs
> good<- !is.na( y)
> x<- x[good,]
> y<- y[good]
> #source("~/Home/Src/fields/R/mKrig.family.R")
> 
> # now look at mKrig w/o sparse matrix 
> look<- mKrig( x,y, cov.function="stationary.cov", aRange=10, lambda=.3,
+                       chol.args=list( pivot=FALSE))
> 
> 
> lookKrig<- Krig( x,y, cov.function="stationary.cov",
+                aRange=10) 
> 
> test.df<-Krig.ftrace(look$lambda,lookKrig$matrices$D)
> 
> test<- Krig.coef( lookKrig, lambda=look$lambda)
> 
> test.for.zero( look$d, test$d, tag="Krig mKrig d coef")
Testing:  Krig mKrig d coef
PASSED test at tolerance  1e-08
> test.for.zero( look$c, test$c, tag="Krig mKrig c coef")
Testing:  Krig mKrig c coef
PASSED test at tolerance  1e-08
> 
> # test of trace calculation
> 
> look<- mKrig( x,y, cov.function="stationary.cov", aRange=10, lambda=.3,
+          
+           find.trA=TRUE, NtrA= 1000, iseed=243)
> 
> test.for.zero( look$eff.df, test.df,tol=.01, tag="Monte Carlo eff.df")
Testing:  Monte Carlo eff.df
PASSED test at tolerance  0.01
> 
> 
> # 
> lookKrig<-Krig( x,y, cov.function="stationary.cov",
+                aRange=350, Distance="rdist.earth",Covariance="Wendland", 
+                cov.args=list( k=2, dimension=2) ) 
> 
> look<- mKrig( x,y, cov.function="stationary.cov", 
+         aRange=350, 
+         Distance="rdist.earth",Covariance="Wendland",  
+         cov.args=list( k=2, dimension=2),
+         lambda=lookKrig$lambda,
+         find.trA=TRUE, NtrA= 1000, iseed=243)
> 
> test.for.zero( look$c, lookKrig$c, tag="Test of wendland and great circle")
Testing:  Test of wendland and great circle
PASSED test at tolerance  1e-08
> 
> test.for.zero(look$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D)
+               ,tol=.01, tag="eff.df")
Testing:  eff.df
PASSED test at tolerance  0.01
> 
> # same calculation using sparse matrices.
> 
> look4<- mKrig( x,y, cov.function="wendland.cov", 
+         aRange=350, 
+         Dist.args=list( method="greatcircle"),  
+         cov.args=list( k=2),
+         lambda=lookKrig$lambda,
+         find.trA=TRUE, NtrA=500, iseed=243)
> 
> test.for.zero( look$c.coef, look4$c.coef,tol=8e-7, 
+            tag="Test of sparse wendland and great circle")
Testing:  Test of sparse wendland and great circle
PASSED test at tolerance  8e-07
> test.for.zero(look4$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D),
+                         tol=.01, tag="sparse eff.df")
Testing:  sparse eff.df
PASSED test at tolerance  0.01
> 
> # great circle distance switch has been a  big bug -- test some options
> 
> look<- mKrig( x,y, cov.function="wendland.cov", 
+  aRange=350, Dist.args=list( method="greatcircle"),  
+  cov.args=list( k=2),lambda=lookKrig$lambda,
+  find.trA=TRUE, NtrA=1000, iseed=243)
> 
> test.for.zero(look$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D),
+                    tol=1e-2, tag="exact sparse eff.df")
Testing:  exact sparse eff.df
PASSED test at tolerance  0.01
> 
> # compare to fast Tps 
> look3<-  fastTps( x,y,aRange=350,lambda=lookKrig$lambda, NtrA=200, iseed=243, 
+                 lon.lat=TRUE)
> #look3$c<- lookKrig$c
> #look3$d<-  lookKrig$d
> object<- look3
> np<- object$np
> Ey <- diag(1, np)
> NtrA <- np
> hold <- predict.mKrig(object, ynew = Ey, collapseFixedEffect=FALSE)
> hold2<- matrix( NA, np,np)
> for(  k in 1:np){
+ hold2[,k] <- predict.Krig(lookKrig, y = Ey[,k])
+ }
> #plot( diag(hold), diag(hold2))
> 
> 
> test.for.zero( look3$c, lookKrig$c, tol=5e-7)
PASSED test at tolerance  5e-07
> test.for.zero( look3$d, lookKrig$d, tol=2e-8)
PASSED test at tolerance  2e-08
> test.for.zero( look3$fitted.values, lookKrig$fitted.values, tol=1e-7)
PASSED test at tolerance  1e-07
> 
> test.for.zero( predict( look3, xnew= look3$x), predict( lookKrig, xnew= lookKrig$x),
+                tol=5e-7)
PASSED test at tolerance  5e-07
> 
> test.for.zero( hold[,1], hold2[,1], tol=1e-7, relative=FALSE)
PASSED test at tolerance  1e-07
> 
> test.for.zero(diag(hold),diag(hold2), tol=2E-7,
+               relative=FALSE, tag="exact sparse eff.df by predict -- fastTps")
Testing:  exact sparse eff.df by predict -- fastTps
PASSED test at tolerance  2e-07
> #plot( diag(hold), ( 1- diag(hold2)/ diag(hold))  )
> 
> test.for.zero(look3$eff.df,sum( diag(hold)) , tag="fastTps ef.df exact" )
Testing:  fastTps ef.df exact
PASSED test at tolerance  1e-08
> 
> test.for.zero(look3$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D),
+                    tol=2e-7, tag="exact sparse eff.df through mKrig-- fastTps")
Testing:  exact sparse eff.df through mKrig-- fastTps
PASSED test at tolerance  2e-07
> 
> # calculations of likelihood, sigma and tau
> 
> lam<-.2
> 
> out<- mKrig( x,y, cov.function =Exp.cov, aRange=4, lambda=lam)
> out2<- Krig( x,y, cov.function =Exp.cov, aRange=4, lambda=lam)
> 
>             
> Sigma<- Exp.cov( x,x,aRange=4)
> X<-  cbind( rep(1, nrow(x)), x)
> 
> Sinv<- solve( Sigma + lam* diag( 1, nrow( x)))
> 
> #checks on  likelihoods            
> 
> # quadratic form:
> betaHat<- c(solve( t(X)%*%Sinv%*%(X) ) %*% t(X) %*%Sinv%*%y)
> test.for.zero( betaHat, out$beta, tag="initial check on d for likelihood")
Testing:  initial check on d for likelihood
PASSED test at tolerance  1e-08
> r<- y -X%*%betaHat
> N<- nrow(x)
> look<-  t( r)%*%(Sinv)%*%r/N
> 
> 
> 
> test.for.zero( look, out$summary["sigma2"], tag="sigma2 hat from likelihood")
Testing:  sigma2 hat from likelihood
PASSED test at tolerance  1e-08
> 
> test.for.zero( look, out2$sigma.MLE, tag="sigma2 hat from likelihood compared to Krig")
Testing:  sigma2 hat from likelihood compared to Krig
PASSED test at tolerance  1e-08
> 
> 
> 
> # check determinant
> lam<- .2
> Sigma<- Exp.cov( x,x,aRange=4)
> M<- Sigma + lam * diag( 1, nrow(x))
> chol( M)-> Mc
> look2<- sum( log(diag( Mc)))*2
> 
> out<-mKrig( x,y,cov.function =Exp.cov, aRange=4, lambda=lam)
> 
> test.for.zero( out$lnDetCov, look2)
PASSED test at tolerance  1e-08
> test.for.zero( out$lnDetCov, determinant(M, log=TRUE)$modulus)
PASSED test at tolerance  1e-08
> 
> # weighted version 
> lam<- .2
> Sigma<- Exp.cov( x,x,aRange=4)
> set.seed( 123)
> weights<- runif(nrow( x))
> M<- Sigma +  diag(lam/ weights)
> chol( M)-> Mc
> look2<- sum( log(diag( Mc)))*2
> 
> out<-mKrig( x,y,weights=weights, cov.function =Exp.cov, aRange=4, lambda=lam)
> 
> test.for.zero( out$lnDetCov, look2)
PASSED test at tolerance  1e-08
> test.for.zero(  look2, determinant(M, log=TRUE)$modulus)
PASSED test at tolerance  1e-08
> test.for.zero( out$lnDetCov, determinant(M, log=TRUE)$modulus)
PASSED test at tolerance  1e-08
> 
> 
> 
> # check profile likelihood by estimating MLE
> lam.true<- .2
> N<- nrow( x)
> Sigma<- Exp.cov( x,x,aRange=4)
> M<- Sigma + lam.true * diag( 1, nrow(x))
> chol( M)-> Mc
> t(Mc)%*%Mc -> test
> 
> 
> 
> 
> ##D set.seed( 234)
> ##D NSIM<- 100
> ##D hold2<-rep( NA, NSIM)
> ##D temp.fun<- function(lglam){
> ##D             out<-mKrig( x,ytemp,
> ##D                         cov.function =Exp.cov, aRange=4, lambda=exp(lglam))
> ##D             return(-1* out$lnProfileLike)}
> 
> ##D hold1<-rep( NA, NSIM)
> ##D yt<- rep( 1, N) 
> ##D obj<- Krig( x,yt, aRange=4)
> 
> 
> ##D E<- matrix( rnorm( NSIM*N), ncol=NSIM)
> 
> ##D for ( j in 1:NSIM){
> ##D cat( j, " ")
> ##D ytemp <- x%*%c(1,2) +  t(Mc)%*%E[,j] 
> ##D out<- optim( log(.2), temp.fun, method="BFGS")
> ##D hold2[j]<- exp(out$par)
> ##D hold1[j]<-  gcv.Krig(obj, y=ytemp)$lambda.est[6,1]
> 
> ##D }
> ##D test.for.zero( median( hold1), .2, tol=.08)
> ##D test.for.zero( median( hold2), .2, tol=.12)
> 
> 
> 
>             
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  1.770   0.161   1.888