1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
#
# fields is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2022 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka, douglasnychka@gmail.edu,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
##END HEADER
#
suppressMessages(library(fields))
options(echo=FALSE)
test.for.zero.flag<- 1
set.seed(123)
# Local Kriging - sparse matrix implementation (small example)
#source( "makeBigB.R")
# -----------------------------
# Define grid and observations
# -----------------------------
m<- 40
n<- 45
nx<- m
ny<- n
M<- 10
dx<- 1
dy<- 1
sigma2<-2.0
aRange<- 5.5
np<-4
set.seed( 123)
# locations random but avoid edges
s<- cbind( dx*runif( M, np, (m-(np+1))),
dy* runif( M, np, (n-(np+1)))
)
# random uniform is ok as we just checking agreement
set.seed( 222)
y<- matrix( runif(m*n),m,n)
yUnrolled<- c( y)
#look<- sparseB%*%yUnrolled
look2<- predVar<- rep( NA, M)
theShift<- 0:(2*np-1) - (np - 1)
for( k in 1:M){
#k<- 3
yTemp<- NULL
sTemp<- NULL
i0<- trunc(s[k,1])
j0<- trunc(s[k,2])
for( j in theShift + j0){
for( i in theShift + i0){
#cat( i,j, fill=TRUE)
sTemp<- rbind( sTemp, c(i,j))
yTemp<- c(yTemp,y[i,j])
}
}
Sigma11<- sigma2*exp(-rdist(sTemp, sTemp)/aRange)
Sigma11Inv<- solve(Sigma11)
Sigma21<- sigma2*exp(-rdist(rbind(s[k,]), sTemp)/aRange)
Btest<- Sigma21%*%Sigma11Inv
result<- Sigma21%*%Sigma11Inv%*%yTemp
look2[k]<- result
predVar[k]<- sigma2 - diag(Sigma21%*%Sigma11Inv%*%t(Sigma21 ) )
}
###################################
# test new function
###################################
sparseObj0<- offGridWeights( s, list( x= 1:m, y=1:n),
aRange=aRange, sigma2=sigma2,
Covariance="Exponential",
np=np)
look5<- sparseObj0$B%*%yUnrolled
test.for.zero( look2, look5 )
test.for.zero(predVar, sparseObj0$predictionVariance )
# check 15.4
mKrigObj<- mKrig( s, rnorm( nrow(s)),
sigma2=sigma2, tau=0,
aRange=aRange,
Covariance="Exponential")
sparseObj<- offGridWeights( s, list( x= 1:m, y=1:n),
mKrigObject = mKrigObj, np=np
)
look3<- sparseObj$B%*%yUnrolled
test.for.zero( look2, look3 )
test.for.zero(predVar, sparseObj$predictionVariance )
# cheating on mKrig object
fakeObj<- list( args = list( Covariance= "Exponential" ),
summary= c(aRange=aRange*2.5, sigma2=sigma2)
)
# fakeObj1<- list( args = list( Covariance= "Matern", smoothness=.5 ),
# summary= c(aRange=10*2.5, sigma2=sigma2)
# )
sparseObj1<- offGridWeights( s*2.5,
list( x = (1:m)*2.5,
y = (1:n)*2.5 ),
mKrigObject = fakeObj,
np = np
)
look4<- sparseObj1$B%*%yUnrolled
test.for.zero( look2, look4 , tag="sparse vs mKrig")
test.for.zero( sparseObj$predictionVariance,
predVar, tag="prediction Variance sparse vs mKrig" )
cat("all done with off grid weight tests part 1", fill=TRUE)
|