File: offGridWeightsNew.test.R

package info (click to toggle)
r-cran-fields 16.3.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,972 kB
  • sloc: fortran: 1,021; ansic: 288; sh: 35; makefile: 2
file content (152 lines) | stat: -rw-r--r-- 4,522 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#
# fields  is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2022 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka,  douglasnychka@gmail.edu,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
##END HEADER


# test of sreg and related functions

suppressMessages(library(fields))
#options(echo=FALSE)

test.for.zero.flag<- 1



# simple covariance function for implementation
exp_cov <- function(dist){
  sigma2<-1 
  covariance <- sigma2* exp(-dist / 10) # 10 is arbitrary 
  return(covariance)
}

# -----------------------------
# Define grid and observations
# -----------------------------
 
m<- 10
n<- 11
nx<- m
ny<- n
M<- 15
dx<- 1
dy<- 1
sigma2<-2.0 
np<-3 


# first a case where all obs in same grid box.
# addition of "dx" also tests that this works when grid is not just integers
# set dx=1 for the most basic case
dx<- .5 
s0<- rbind( 
            c(5.1,6.2),
            c(5.1,6.5),
            c( 5.85,6.45)
            )
 s0<- s0*dx
 
test0<-  offGridWeights( s0, list( x= (1:m)*dx, y=(1:n)*dx),
                                              aRange=10*dx, sigma2=sigma2, 
                                              Covariance="Exponential", 
                                              np=2, 
                                              debug=TRUE) 
# explicit nearest neighbors in this case
sTmp<- cbind( rep(4:7,4), rep(5:8,each=4) )
sGrid<- sTmp*dx

# check that same grid being used by function
test.for.zero(sGrid, cbind(test0$gridX[,1], test0$gridY[,1]) )

S21  <- 2.0* exp( -rdist( s0, sGrid)/(10*dx))
S11  <- 2.0* exp( -rdist( sGrid , sGrid)/(10*dx) )
S22 <-  2.0* exp( -rdist( s0, s0)/(10*dx))
# local weights applied for prediction 
Btest<- S21%*% solve( S11)
# find indices for neigborhood
sIndex<- sTmp[,1] + (sTmp[,2]-1)*m
# Kriging weights
Bfull<-  spam2full(test0$B[,sIndex])
test.for.zero( Bfull, Btest)
# standard error matrix 
# note that transpsoe also taken so SEtest%*%t( SEtest) = cov matrix
SEtest<-  t(chol(S22 - S21%*% solve( S11)%*%t(S21) ))
SEfull <- spam2full(test0$SE)
test.for.zero( SEfull, SEtest)


# now test several observation locations

 dx<- .45
 s<- rbind( 
   c(5.1,6.2),
   c(7.1,7.2),
   c(5.1,6.5),
   c(8.5,4.4),
   c( 5.85,6.45),
   c(7.3,7.4)
 )
 s<- s * dx
# Note s0 from above is  s[c(1,3,5),]
ind1<- c(1,3,5)
 
 sTmp<- cbind( rep(4:7,4), rep(5:8,each=4) )
 sGrid<- sTmp*dx
 sIndex<- sTmp[,1] + (sTmp[,2]-1)*m
 
 S21<- 2.0* exp( -rdist( s[ind1,], sGrid)/(10*dx) )
 S11<- 2.0* exp( -rdist( sGrid , sGrid)/(10*dx) )
 S22<- 2.0* exp( -rdist( s[ind1,], s[ind1,])/(10*dx) )
 
 sparseObj<-  offGridWeights( s, list( x= (1:m)*dx, y=(1:n)*dx),
                                 aRange=(10*dx), sigma2=sigma2, 
                                 Covariance="Exponential", 
                                 np=2, 
                                 debug=TRUE)
 
test.for.zero( sparseObj$Sigma21Star[ind1,], S21 )
test.for.zero( sparseObj$Sigma11Inv, solve(S11) )

Btest<- S21%*% solve( S11)
look2<- spam2full( sparseObj$B)
test.for.zero( Btest,look2[ind1, sIndex] )


SEfull<- spam2full( sparseObj$SE)
SE2full<- (SEfull)%*%t(SEfull)
test.for.zero(diag( SE2full), sparseObj$predictionVariance )

SEtest<- t(chol(S22 - S21%*%solve( S11)%*%t( S21) ))
test.for.zero(SEtest, SEfull[ind1, ind1] )

# check that debug FALSE also works

sparseObj1<-  offGridWeights( s, list( x= (1:m)*dx, y=(1:n)*dx),
                                aRange=(10*dx), sigma2=sigma2, 
                                Covariance="Exponential", 
                                np=2, 
                                debug=FALSE)

test.for.zero( sparseObj$B, sparseObj1$B)
test.for.zero( sparseObj$SE, sparseObj1$SE)

cat("all done with off grid weight tests part 2", fill=TRUE)