File: simLocal.spatialProcess.R

package info (click to toggle)
r-cran-fields 17.1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 6,100 kB
  • sloc: fortran: 1,021; ansic: 294; sh: 35; makefile: 2
file content (236 lines) | stat: -rw-r--r-- 8,846 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#
# fields  is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2024 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka,  douglasnychka@gmail.com,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
"simLocal.spatialProcess" <- function(mKrigObject,  
    gridList = NULL,
                     M = 1,
                    nx = 80,
                    ny = 80, 
                 delta = NULL, 
                  fast = FALSE, 
                NNSize = 4, 
         NNSizePredict = 4, 
              #truncate = NULL, 
         giveWarnings = FALSE, 
               verbose = FALSE,
                          ...)
#
# NOTE throughout $x is first dimension of the grid in a gridList object  but also 
# $x in mKrig object is the _matrix_ of locations
# 
    {
  
   nObs<- nrow( mKrigObject$x)
   sDimension<- ncol(mKrigObject$x)
   
   if ( sDimension !=2) {
        stop("conditional simulation using fast, local algorithm 
             only implemented for  2 dimensions")
   }
   # great circle distance is not a stationary model for a regular lon/lat 
   # grid
   if( !is.null(mKrigObject$args$Distance)){
     if( (mKrigObject$args$Distance!="rdist") & fast){
       cat( mKrigObject$args$Distance, fill=TRUE)
       stop("can not use fast predict option with nonEuclidean distance.")
     }
   }
   # 
   # this is needed because of the fast simulation algorithm 
     gridInfo<- augmentPredictionGrid(
     gridList = gridList,
            s = mKrigObject$x, 
           nx = nx, 
           ny = ny,
       NNSize = NNSize,
     )
  # this will fill in gridList from nx, ny if not passed. 
     gridList<- gridInfo$gridList
     predictionGrid<- gridInfo$predictionGrid
     indexSubset<- gridInfo$indexSubset
     
#
# core covariance parameters from spatial model   
#
    tau <-    mKrigObject$summary["tau"]
    sigma2 <- mKrigObject$summary["sigma2"]
    aRange<-  mKrigObject$summary["aRange"]
    Covariance <- mKrigObject$args$Covariance
# just use mKrigObject for covariance info
    
   
#
# set up various arrays for reuse during the simulation
#  
####### NOTE there are two and possibly (if fast ==TRUE ) three SETUP steps  to 
# make conditional  simulation loops efficients by reusing some objects. 
#  
# SETUP weights for  fast, local off grid simulation
# grid is expanded to include nearest neighbors.
#
    timeOffGridSetup <- system.time(
      localObject <-  offGridWeights2D( s=mKrigObject$x,
                                        gridList=predictionGrid,
                                        NNSize=NNSize,
                                        mKrigObject=mKrigObject,
                                        Covariance=Covariance,
                                        covArgs=NULL,
                                        aRange=aRange,
                                        sigma2=sigma2,
                                        giveWarnings=giveWarnings,
                                        debug=FALSE,
                                        verbose=verbose)
        )[3]
#
# SETUP object when  fast==TRUE for rapid prediction
#
    timefastSetup<- NA
    fastObject<-NULL
    if(fast){
      if( verbose){
        cat("covariance function info", fill=TRUE)
        print(mKrigObject$cov.function.name)
        print(mKrigObject$args)
      }
      timefastSetup<- system.time(
        fastObject<- mKrigFastPredictSetup(
                                mKrigObject,
                          gridList = gridList,
                            NNSize = NNSizePredict,
                      giveWarnings = giveWarnings,
                           verbose = verbose) )[3]
    }
#
# SETUP object for simulating on a grid using circulant embedding (CE)
#
    timeCESetup<- system.time(
    CEObject<- circulantEmbeddingSetup(predictionGrid,
                                   cov.function = mKrigObject$cov.function,
                                       cov.args = mKrigObject$args,
                                       #truncate=truncate,
                                   delta = delta
                                       )
    )[3]
    if( verbose){
      cat("info on circulant embedding", fill=TRUE)
      cat( "ratioRMSE", CEObject$ratioRMSE, fill=TRUE)
      cat("dim of full circulant matrix ", CEObject$M, 
            fill = TRUE)
    }
#
# find conditional mean field from initial fit
#.    
      if( verbose){
        print(mKrigObject$args)
      }
      hHat <- predictSurface.mKrig(mKrigObject,
                           gridList = gridList,
                               fast = fast, 
                        setupObject = fastObject,
                        #setupObject = NULL,
                        #     NNSize = NNSizePredict,
                                  ...)$z
      sdNugget<- tau* sqrt(1/mKrigObject$weights)
#      
# setup output array to hold ensemble
#    
    out <- array(NA, c( length(indexSubset$x),
                        length(indexSubset$y), 
                        M))
    t1<-t2<- t3<- rep( NA, M)
    #outData<- matrix( NA,nObs,M )
##########################################################################################
### begin the big loop
##########################################################################################
     for (k in 1:M) {
       if( k%%10 ==0 ){
        cat(k, " ")
       }
        # simulate full field
        t1[k]<- system.time(
        hTrue<- as.matrix(sqrt(sigma2) * circulantEmbedding(CEObject))
        )[3]
        # NOTE: linear, fixed part of model (null space) does not need to be simulated
        # because the estimator is unbiased for this part.
        # the variability is still captured because the fixed part
        # is still estimated as part of the predict step below
        #
        # unroll hTrue from grid and do sparse matrix multiply
        # 
        localError<- rnorm(nObs)
        # sparse matrix multiplication of weights by process on grid
        # and add in independent error 
        t2[k]<- system.time(
        hData <- localObject$B%*%c(hTrue) + 
                    (localObject$SE)%*%localError
              )[3]
        ySynthetic <- hData + sdNugget*rnorm(nObs)
        #outData[,k] <-  ySynthetic
        #
        # predict at grid using these data
        # and subtract from synthetic 'true' value
        #
        t3[k]<-system.time(
            spatialPrediction <- predictSurface.mKrig(mKrigObject,
                                 gridList = gridList,
                                 ynew = ySynthetic,
                                 fast=fast, 
                                 NNSize= NNSizePredict,
                                 setupObject= fastObject,
                                 giveWarnings = TRUE,
                                 ...)$z
         
             )[3]
       
        # # add the error to the actual estimate  (conditional mean)
        # # subset  hTrue to the prediction grid
        # # note for 1D $y is 1.
        # NOTE subset hTrue because it may be generated on a larger grid to include nearest neighbors
        # for local simulation. 
        tmpError<- (spatialPrediction  - hTrue[indexSubset$x,indexSubset$y])
        
        # hHat is of course the conditional mean ...
        out[,, k] <- (hHat + tmpError)
     }
    
    cat(" ", fill=TRUE)
    timingTable<- c(  CESetup = timeCESetup,
                      SetupSim = timeOffGridSetup,
                      SetupPredict = timefastSetup,
                      medCE = median(t1), 
                      medOffGridSim = median(t2),
                      medPredict = median(t3)
    )
    return(list(x = predictionGrid$x[indexSubset$x],
                y = predictionGrid$y[indexSubset$y],
                z = out, 
                hHat= hHat,
                timing=timingTable,
                M= CEObject$M,
                timingFull = cbind( t1, t2,t3),
                #outData=outData,
                #outhData = outhData,
             call = match.call(),
             CEObject = CEObject
             )
           )
}