File: summary.glmfm.Rd

package info (click to toggle)
r-cran-fit.models 0.64-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid
  • size: 364 kB
  • sloc: sh: 13; makefile: 2
file content (42 lines) | stat: -rw-r--r-- 1,151 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/summary.glmfm.R
\name{summary.glmfm}
\alias{summary.glmfm}
\title{Comparison Summaries for Generalized Linear Models}
\usage{
\method{summary}{glmfm}(object, correlation = FALSE, ...)
}
\arguments{
\item{object}{a glmfm object.}

\item{correlation}{a logical value. If \code{TRUE}, correlation matrices of
the coefficient estimates are included in each summary.}

\item{\dots}{additional arguments required by the generic
\code{\link{summary}} function.}
}
\value{
a list with class summary.glmfm whose elements are summaries of each
model in \code{object}.
}
\description{
Compute a summary of each model in a \code{glmfm} object.
}
\examples{

# From ?glm:
# A Gamma example, from McCullagh & Nelder (1989, pp. 300-2)

clotting <- data.frame(
    u = c(5,10,15,20,30,40,60,80,100),
    lot1 = c(118,58,42,35,27,25,21,19,18),
    lot2 = c(69,35,26,21,18,16,13,12,12))

lot1 <- glm(lot1 ~ log(u), data = clotting, family = Gamma)
lot2 <- glm(lot2 ~ log(u), data = clotting, family = Gamma)

fm <- fit.models(lot1, lot2)
summary(fm)
}
\keyword{methods}
\keyword{regression}