1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/clintables.R
\name{shift_table}
\alias{shift_table}
\title{Create a shift table}
\usage{
shift_table(
x,
cn_visit = "VISIT",
cn_visit_num = "VISITNUM",
cn_grade = "LBNRIND",
cn_usubjid = "USUBJID",
cn_lab_cat = NA_character_,
cn_is_baseline = "LBBLFL",
baseline_identifier = "Y",
cn_treatment = NA_character_,
grade_levels = c("LOW", "NORMAL", "HIGH"),
grade_labels = c("Low", "Normal", "High")
)
}
\arguments{
\item{x}{Laboratory Tests Results data frame.}
\item{cn_visit}{column name containing visit names, default to "VISIT".}
\item{cn_visit_num}{column name containing visit numbers, default to "VISITNUM".}
\item{cn_grade}{column name containing reference range indicators, default to "LBNRIND".}
\item{cn_usubjid}{column name containing unique subject inditifiers, default to "USUBJID".}
\item{cn_lab_cat}{column name containing lab tests or examination names, default to "LBTEST".}
\item{cn_is_baseline}{column name containing baseline flags, default to "LBBLFL".}
\item{baseline_identifier}{baseline flag value to use for baseline
identification. Its default is "Y".}
\item{cn_treatment}{column name containing treatment names, default to \code{NA}.}
\item{grade_levels}{levels to use for reference range indicators}
\item{grade_labels}{labels to use for reference range indicators}
}
\value{
the shift table as a data.frame. Additionnal elements are provided
in attributes:
\itemize{
\item "VISIT_N": count of unique subject id per visits, labs and eventually
treatments. This element is supposed to be used as value for argument
\code{hidden_data} of function \code{tabulator()}.
\item "FUN_VISIT": a utility function to easily turn \emph{visit} column as a factor
column. It should be applied after the shift table creation.
\item "FUN_GRADE": a utility function to easily turn \emph{grade} column as a factor
column. It adds "MISSING/Missing" and "SUM/Sum" at the end of the set of values specified
in arguments \code{grade_levels} and \code{grade_labels}. It should be applied after the shift
table creation.
}
}
\description{
Create a shift table ready to be used with \code{tabulator()}.
The function is transforming a dataset representing some
'Laboratory Tests Results' structured as \emph{CDISC clinical trial
data sets} format to a dataset representing the shift table.
Shift tables are tables used in clinical trial analysis.
They show the progression of change from the baseline, with the progression
often being along time; the number of subjects is displayed in different
range (e.g. low, normal, or high) at baseline and at selected time points
or intervals.
}
\examples{
library(data.table)
library(flextable)
# data simulation ----
USUBJID <- sprintf("01-ABC-\%04.0f", 1:200)
VISITS <- c("SCREENING 1", "WEEK 2", "MONTH 3")
LBTEST <- c("Albumin", "Sodium")
VISITNUM <- seq_along(VISITS)
LBBLFL <- rep(NA_character_, length(VISITNUM))
LBBLFL[1] <- "Y"
VISIT <- data.frame(VISIT = VISITS, VISITNUM = VISITNUM,
LBBLFL = LBBLFL, stringsAsFactors = FALSE)
labdata <- expand.grid(USUBJID = USUBJID, LBTEST = LBTEST,
VISITNUM = VISITNUM,
stringsAsFactors = FALSE)
setDT(labdata)
labdata <- merge(labdata, VISIT, by = "VISITNUM")
subject_elts <- unique(labdata[, .SD, .SDcols = "USUBJID"])
subject_elts <- unique(subject_elts)
subject_elts[, c("TREAT") := list(
sample(x = c("Treatment", "Placebo"), size = .N, replace = TRUE))]
subject_elts[, c("TREAT"):= list(
factor(.SD$TREAT, levels = c("Treatment", "Placebo")))]
setDF(subject_elts)
labdata <- merge(labdata, subject_elts,
by = "USUBJID", all.x = TRUE, all.y = FALSE)
labdata[, c("LBNRIND"):= list(
sample(x = c("LOW", "NORMAL", "HIGH"), size = .N,
replace = TRUE, prob = c(.03, .9, .07)))]
setDF(labdata)
# shift table calculation ----
SHIFT_TABLE <- shift_table(
x = labdata, cn_visit = "VISIT",
cn_grade = "LBNRIND",
cn_usubjid = "USUBJID",
cn_lab_cat = "LBTEST",
cn_treatment = "TREAT",
cn_is_baseline = "LBBLFL",
baseline_identifier = "Y",
grade_levels = c("LOW", "NORMAL", "HIGH"))
# get attrs for post treatment ----
SHIFT_TABLE_VISIT <- attr(SHIFT_TABLE, "VISIT_N")
visit_as_factor <- attr(SHIFT_TABLE, "FUN_VISIT")
range_as_factor <- attr(SHIFT_TABLE, "FUN_GRADE")
# post treatments ----
SHIFT_TABLE$VISIT = visit_as_factor(SHIFT_TABLE$VISIT)
SHIFT_TABLE$BASELINE = range_as_factor(SHIFT_TABLE$BASELINE)
SHIFT_TABLE$LBNRIND = range_as_factor(SHIFT_TABLE$LBNRIND)
SHIFT_TABLE_VISIT$VISIT = visit_as_factor(SHIFT_TABLE_VISIT$VISIT)
# tabulator ----
my_format <- function(z) {
formatC(z * 100, digits = 1, format = "f",
flag = "0", width = 4)
}
tab <- tabulator(
x = SHIFT_TABLE,
hidden_data = SHIFT_TABLE_VISIT,
row_compose = list(
VISIT = as_paragraph(VISIT, "\n(N=", N_VISIT, ")")
),
rows = c("LBTEST", "VISIT", "BASELINE"),
columns = c("TREAT", "LBNRIND"),
`n` = as_paragraph(N),
`\%` = as_paragraph(as_chunk(PCT, formatter = my_format))
)
# as_flextable ----
ft_1 <- as_flextable(
x = tab, separate_with = "VISIT",
label_rows = c(LBTEST = "Lab Test", VISIT = "Visit",
BASELINE = "Reference Range Indicator"))
ft_1
}
\concept{tools for clinical reporting}
|