1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
#' Reorder factor levels by sorting along another variable
#'
#' `fct_reorder()` is useful for 1d displays where the factor is mapped to
#' position; `fct_reorder2()` for 2d displays where the factor is mapped to
#' a non-position aesthetic. `last2()` and `first2()` are helpers for `fct_reorder2()`;
#' `last2()` finds the last value of `y` when sorted by `x`; `first2()` finds the first value.
#'
#' @param .f A factor (or character vector).
#' @param .x,.y The levels of `f` are reordered so that the values
#' of `.fun(.x)` (for `fct_reorder()`) and `fun(.x, .y)` (for `fct_reorder2()`)
#' are in ascending order.
#' @param .fun n summary function. It should take one vector for
#' `fct_reorder`, and two vectors for `fct_reorder2`, and return a single
#' value.
#' @param .na_rm Should `fct_reorder()` remove missing values?
#' If `NULL`, the default, will remove missing values with a warning.
#' Set to `FALSE` to preserve `NA`s (if you `.fun` already handles them) and
#' `TRUE` to remove silently.
#' @param .default What default value should we use for `.fun` for
#' empty levels? Use this to control where empty levels appear in the
#' output.
#' @param ... Other arguments passed on to `.fun`.
#' @param .desc Order in descending order? Note the default is different
#' between `fct_reorder` and `fct_reorder2`, in order to
#' match the default ordering of factors in the legend.
#' @export
#' @examples
#' # fct_reorder() -------------------------------------------------------------
#' # Useful when a categorical variable is mapped to position
#' boxplot(Sepal.Width ~ Species, data = iris)
#' boxplot(Sepal.Width ~ fct_reorder(Species, Sepal.Width), data = iris)
#'
#' # or with
#' library(ggplot2)
#' ggplot(iris, aes(fct_reorder(Species, Sepal.Width), Sepal.Width)) +
#' geom_boxplot()
#'
#' # fct_reorder2() -------------------------------------------------------------
#' # Useful when a categorical variable is mapped to color, size, shape etc
#'
#' chks <- subset(ChickWeight, as.integer(Chick) < 10)
#' chks <- transform(chks, Chick = fct_shuffle(Chick))
#'
#' # Without reordering it's hard to match line to legend
#' ggplot(chks, aes(Time, weight, colour = Chick)) +
#' geom_point() +
#' geom_line()
#'
#' # With reordering it's much easier
#' ggplot(chks, aes(Time, weight, colour = fct_reorder2(Chick, Time, weight))) +
#' geom_point() +
#' geom_line() +
#' labs(colour = "Chick")
fct_reorder <- function(.f,
.x,
.fun = median,
...,
.na_rm = NULL,
.default = Inf,
.desc = FALSE) {
f <- check_factor(.f)
stopifnot(length(f) == length(.x))
.fun <- as_function(.fun)
check_dots_used()
check_bool(.na_rm, allow_null = TRUE)
check_bool(.desc)
miss <- is.na(.x)
if (any(miss)) {
if (is.null(.na_rm)) {
cli::cli_warn(c(
"{.fn fct_reorder} removing {sum(miss)} missing value{?s}.",
i = "Use {.code .na_rm = TRUE} to silence this message.",
i = "Use {.code .na_rm = FALSE} to preserve NAs."
))
.na_rm <- TRUE
}
if (isTRUE(.na_rm)) {
.x <- .x[!miss]
.f <- .f[!miss]
}
}
summary <- tapply(.x, .f, function(x) .fun(x, ...), default = .default)
check_single_value_per_group(summary, ".fun")
lvls_reorder(f, order(summary, decreasing = .desc))
}
#' @export
#' @rdname fct_reorder
fct_reorder2 <- function(.f,
.x,
.y,
.fun = last2,
...,
.na_rm = NULL,
.default = -Inf,
.desc = TRUE) {
.f <- check_factor(.f)
stopifnot(length(.f) == length(.x), length(.x) == length(.y))
check_dots_used()
check_bool(.na_rm, allow_null = TRUE)
check_bool(.desc)
miss <- is.na(.x) | is.na(.y)
if (any(miss)) {
if (is.null(.na_rm)) {
cli::cli_warn(c(
"{.fn fct_reorder2} removing {sum(miss)} missing value{?s}.",
i = "Use {.code .na_rm = TRUE} to silence this message.",
i = "Use {.code .na_rm = FALSE} to preserve NAs."
))
.na_rm <- TRUE
}
if (isTRUE(.na_rm)) {
.x <- .x[!miss]
.y <- .y[!miss]
.f <- .f[!miss]
}
}
summary <- tapply(
seq_along(.x),
.f,
function(i) .fun(.x[i], .y[i], ...),
default = .default
)
check_single_value_per_group(summary, ".fun")
lvls_reorder(.f, order(summary, decreasing = .desc))
}
check_single_value_per_group <- function(x, fun_arg, call = caller_env()) {
# This is a bit of a weak test, but should detect the most common case
# where `.fun` returns multiple values.
if (is.list(x)) {
cli::cli_abort("{.arg {fun_arg}} must return a single value per group", call = call)
}
}
#' @export
#' @rdname fct_reorder
last2 <- function(.x, .y) {
terminal(.x, .y, desc = TRUE)
}
#' @export
#' @rdname fct_reorder
first2 <- function(.x, .y) {
terminal(.x, .y, desc = FALSE)
}
terminal <- function(x, y, desc) {
miss <- is.na(x) | is.na(y)
x <- x[!miss]
y <- y[!miss]
if (length(x) == 0) {
y[NA_integer_]
} else {
y[[order(x, decreasing = desc)[[1]]]]
}
}
#' Reorder factor levels by first appearance, frequency, or numeric order
#'
#' This family of functions changes only the order of the levels.
#' * `fct_inorder()`: by the order in which they first appear.
#' * `fct_infreq()`: by number of observations with each level (largest first)
#' * `fct_inseq()`: by numeric value of level.
#'
#' @inheritParams lvls_reorder
#' @param f A factor
#' @export
#' @examples
#' f <- factor(c("b", "b", "a", "c", "c", "c"))
#' f
#' fct_inorder(f)
#' fct_infreq(f)
#'
#' f <- factor(1:3, levels = c("3", "2", "1"))
#' f
#' fct_inseq(f)
fct_inorder <- function(f, ordered = NA) {
f <- check_factor(f)
check_bool(ordered, allow_na = TRUE)
idx <- as.integer(f)[!duplicated(f)]
idx <- union(idx[!is.na(idx)], lvls_seq(f))
lvls_reorder(f, idx, ordered = ordered)
}
#' @export
#' @rdname fct_inorder
#' @inheritParams fct_lump
fct_infreq <- function(f, w = NULL, ordered = NA) {
f <- check_factor(f)
w <- compute_weights(f, w)
check_bool(ordered, allow_na = TRUE)
lvls_reorder(f, order(w, decreasing = TRUE), ordered = ordered)
}
#' @export
#' @rdname fct_inorder
fct_inseq <- function(f, ordered = NA) {
f <- check_factor(f)
check_bool(ordered, allow_na = TRUE)
num_levels <- suppressWarnings(as.numeric(levels(f)))
if (all(is.na(num_levels))) {
cli::cli_abort("At least one existing level must be coercible to numeric.")
}
lvls_reorder(f, order(num_levels), ordered = ordered)
}
|