1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
library(foreach)
n <- 10
nrows <- 5
ncols <- 5
# vector example
set.seed(17)
x <- numeric(n)
for (i in seq(along=x))
x[i] <- rnorm(1)
set.seed(17)
y <- foreach(icount(n), .combine='c') %do%
rnorm(1)
cat('results of vector example:\n')
print(identical(x, y))
# list example
set.seed(17)
x <- vector('list', length=n)
for (i in seq(length=n))
x[i] <- list(rnorm(10))
set.seed(17)
y <- foreach(icount(n)) %do%
rnorm(10)
cat('results of list example:\n')
print(identical(x, y))
# matrix example
set.seed(17)
cols <- vector('list', length=ncols)
for (i in seq(along=cols))
cols[i] <- list(rnorm(nrows))
x <- do.call('cbind', cols)
set.seed(17)
y <- foreach(icount(ncols), .combine='cbind') %do%
rnorm(nrows)
cat('results of matrix example:\n')
dimnames(y) <- NULL
print(identical(x, y))
# another matrix example
set.seed(17)
cols <- vector('list', length=ncols)
for (i in seq(along=cols)) {
r <- numeric(nrows)
for (j in seq(along=r))
r[j] <- rnorm(1)
cols[i] <- list(r)
}
x <- do.call('cbind', cols)
set.seed(17)
y <- foreach(icount(ncols), .combine='cbind') %:%
foreach(icount(nrows), .combine='c') %do%
rnorm(1)
cat('results of another matrix example:\n')
dimnames(y) <- NULL
print(identical(x, y))
# ragged matrix example
set.seed(17)
x <- vector('list', length=ncols)
for (i in seq(along=x))
x[i] <- list(rnorm(i))
set.seed(17)
y <- foreach(i=icount(ncols)) %do%
rnorm(i)
cat('results of ragged matrix example:\n')
print(identical(x, y))
# another ragged matrix example
set.seed(17)
x <- vector('list', length=ncols)
for (i in seq(along=x)) {
r <- numeric(i)
for (j in seq(along=r))
r[j] <- rnorm(1)
x[i] <- list(r)
}
set.seed(17)
y <- foreach(i=icount(ncols)) %:%
foreach(icount(i), .combine='c') %do%
rnorm(1)
cat('results of another ragged matrix example:\n')
print(identical(x, y))
# filtering example
set.seed(17)
a <- rnorm(10)
# C-style approach
x <- numeric(length(a))
n <- 0
for (i in a) {
if (i > 0) {
n <- n + 1
x[n] <- i
}
}
length(x) <- n
# Vector approach
y <- a[a > 0]
# foreach approach
z <- foreach(i=a, .combine='c') %:% when(i > 0) %do% i
cat('results of filtering example:\n')
print(identical(x, y))
print(identical(x, z))
# Define a function that creates an iterator that returns chunks of a vecto
ivector <- function(x, chunksize) {
n <- length(x)
i <- 1
nextEl <- function() {
if (n <= 0) stop('StopIteration')
chunks <- ceiling(n / chunksize)
m <- ceiling(n / chunks)
r <- seq(i, length=m)
i <<- i + m
n <<- n - m
x[r]
}
obj <- list(nextElem=nextEl)
class(obj) <- c('abstractiter', 'iter')
obj
}
# another filtering example
set.seed(17)
a <- rnorm(10000)
# Vector approach
x <- a[a > 0]
# foreach with vectorization, limiting vector lengths to 1000
y <- foreach(a=ivector(a, 1000), .combine='c') %do%
a[a > 0]
cat('results of another filtering example:\n')
print(identical(x, y))
|