File: future.R

package info (click to toggle)
r-cran-future 1.11.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,380 kB
  • sloc: sh: 14; makefile: 2
file content (207 lines) | stat: -rw-r--r-- 8,647 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#' Create a future
#'
#' Creates a future that evaluates an \R expression or
#' a future that calls an \R function with a set of arguments.
#' How, when, and where these futures are evaluated can be configured
#' using \code{\link{plan}()} such that it is evaluated in parallel on,
#' for instance, the current machine, on a remote machine, or via a
#' job queue on a compute cluster.
#' Importantly, any \R code using futures remains the same regardless
#' on these settings and there is no need to modify the code when
#' switching from, say, sequential to parallel processing.
#'
#' @inheritParams Future-class
#' 
#' @param expr,value An \R \link[base]{expression}.
#'
#' @param evaluator,\dots (internal) The actual function that evaluates
#' the future expression and returns a \link{Future} and additional
#' arguments passed to it.
#' The evaluator function should accept all of the same
#' arguments as the ones listed here
#' (except \code{evaluator}, \code{FUN} and \code{args}).
#' The default evaluator function is the one that the user
#' has specified via \code{\link{plan}()}.
#'
#' @return
#' \code{f <- future(expr)} creates a \link{Future} \code{f} that evaluates expression \code{expr}, the value of the future is retrieved using \code{v <- value(f)}.
#'
#' @details
#' The state of a future is either unresolved or resolved.
#' The value of a future can be retrieved using \code{v <- \link{value}(f)}.
#' Querying the value of a non-resolved future will \emph{block} the call
#' until the future is resolved.
#' It is possible to check whether a future is resolved or not
#' without blocking by using \code{\link{resolved}(f)}.
#'
#' For a future created via a future assignment
#' (\code{x \%<-\% value} or \code{futureAssign("x", value)}), the value
#' is bound to a promise, which when queried will internally call
#' \code{\link{value}()}  on the future and which will then be resolved
#' into a regular variable bound to that value.  For example, with future
#' assignment \code{x \%<-\% value}, the first time variable \code{x} is
#' queried the call blocks if (and only if) the future is not yet resolved.
#' As soon as it is resolved, and any succeeding queries, querying \code{x}
#' will immediately give the value.
#'
#' The future assignment construct \code{x \%<-\% value} is not a formal
#' assignment per se, but a binary infix operator on objects \code{x}
#' and expression \code{value}.  However, by using non-standard evaluation,
#' this constructs can emulate an assignment operator similar to
#' \code{x <- value}. Due to \R's precedence rules of operators,
#' future expressions often need to be explicitly bracketed, e.g.
#' \code{x \%<-\% { a + b }}.
#'
#'
#' @section Eager or lazy evaluation:
#' By default, a future is resolved using \emph{eager} evaluation
#' (\code{lazy = FALSE}).  This means that the expression starts to
#' be evaluated as soon as the future is created.
#'
#' As an alternative, the future can be resolved using \emph{lazy}
#' evaluation (\code{lazy = TRUE}).  This means that the expression
#' will only be evaluated when the value of the future is requested.
#' \emph{Note that this means that the expression may not be evaluated
#' at all - it is guaranteed to be evaluated if the value is requested}.
#'
#' For future assignments, lazy evaluation can be controlled via the
#' \code{\%lazy\%} operator, e.g. \code{x \%<-\% { expr } \%lazy\% TRUE}.
#'
#'
#' @section Globals used by future expressions:
#' Global objects (short \emph{globals}) are objects (e.g. variables and
#' functions) that are needed in order for the future expression to be
#' evaluated while not being local objects that are defined by the future
#' expression. For example, in
#' \preformatted{
#'   a <- 42
#'   f <- future({ b <- 2; a * b })
#' }
#' variable \code{a} is a global of future assignment \code{f} whereas
#' \code{b} is a local variable.
#' In order for the future to be resolved successfully (and correctly),
#' all globals need to be gathered when the future is created such that
#' they are available whenever and wherever the future is resolved.
#'
#' The default behavior (\code{globals = TRUE}) of all evaluator functions,
#' is that globals are automatically identified and gathered.
#' More precisely, globals are identified via code inspection of the
#' future expression \code{expr} and their values are retrieved with
#' environment \code{envir} as the starting point (basically via
#' \code{get(global, envir = envir, inherits = TRUE)}).
#' \emph{In most cases, such automatic collection of globals is sufficient
#' and less tedious and error prone than if they are manually specified}.
#'
#' However, for full control, it is also possible to explicitly specify
#' exactly which the globals are by providing their names as a character
#' vector.
#' In the above example, we could use
#' \preformatted{
#'   a <- 42
#'   f <- future({ b <- 2; a * b }, globals = "a")
#' }
#'
#' Yet another alternative is to explicitly specify also their values
#' using a named list as in
#' \preformatted{
#'   a <- 42
#'   f <- future({ b <- 2; a * b }, globals = list(a = a))
#' }
#' or
#' \preformatted{
#'   f <- future({ b <- 2; a * b }, globals = list(a = 42))
#' }
#'
#' Specifying globals explicitly avoids the overhead added from
#' automatically identifying the globals and gathering their values.
#' Furthermore, if we know that the future expression does not make use
#' of any global variables, we can disable the automatic search for
#' globals by using
#' \preformatted{
#'   f <- future({ a <- 42; b <- 2; a * b }, globals = FALSE)
#' }
#'
#' Future expressions often make use of functions from one or more packages.
#' As long as these functions are part of the set of globals, the future
#' package will make sure that those packages are attached when the future
#' is resolved.  Because there is no need for such globals to be frozen
#' or exported, the future package will not export them, which reduces
#' the amount of transferred objects.
#' For example, in
#' \preformatted{
#'   x <- rnorm(1000)
#'   f <- future({ median(x) })
#' }
#' variable \code{x} and \code{median()} are globals, but only \code{x}
#' is exported whereas \code{median()}, which is part of the \pkg{stats}
#' package, is not exported.  Instead it is made sure that the \pkg{stats}
#' package is on the search path when the future expression is evaluated.
#' Effectively, the above becomes
#' \preformatted{
#'   x <- rnorm(1000)
#'   f <- future({
#'     library("stats")
#'     median(x)
#'   })
#' }
#' To manually specify this, one can either do
#' \preformatted{
#'   x <- rnorm(1000)
#'   f <- future({
#'     median(x)
#'   }, globals = list(x = x, median = stats::median)
#' }
#' or
#' \preformatted{
#'   x <- rnorm(1000)
#'   f <- future({
#'     library("stats")
#'     median(x)
#'   }, globals = list(x = x))
#' }
#' Both are effectively the same.
#'
#'
#' Although rarely needed, a combination of automatic identification and manual
#' specification of globals is supported via attributes \code{add} (to add
#' false negatives) and \code{ignore} (to ignore false positives) on value
#' \code{TRUE}.  For example, with
#' \code{globals = structure(TRUE, ignore = "b", add = "a")} any globals
#' automatically identified except \code{b} will be used in addition to
#' global \code{a}.
#'
#' When using future assignments, globals can be specified analogously
#' using the \code{\link{\%globals\%}} operator, e.g.
#' \preformatted{
#'   x <- rnorm(1000)
#'   y \%<-\% { median(x) } \%globals\% list(x = x, median = stats::median)
#' }
#'
#' @example incl/future.R
#'
#'
#' @seealso
#' How, when and where futures are resolved is given by the
#' \emph{future strategy}, which can be set by the end user using the
#' \code{\link{plan}()} function.  The future strategy must not be
#' set by the developer, e.g. it must not be called within a package.
#'
#' @aliases futureCall
#' @export
#' @name future
future <- function(expr, envir = parent.frame(), substitute = TRUE, globals = TRUE, packages = NULL, lazy = FALSE, seed = NULL, evaluator = plan("next"), ...) {
  if (substitute) expr <- substitute(expr)

  if (!is.function(evaluator)) {
    stop("Argument 'evaluator' must be a function: ", typeof(evaluator))
  }

 future <- evaluator(expr, envir = envir, substitute = FALSE, lazy = lazy, seed = seed, globals = globals, packages = packages, ...)

  ## Assert that a future was returned
  if (!inherits(future, "Future")) {
    stop("Argument 'evaluator' specifies a function that does not return a Future object: ", paste(sQuote(class(future)), collapse = ", "))
  }

  future
}