1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
#' Plan how to resolve a future
#'
#' This function allows \emph{the user} to plan the future, more specifically,
#' it specifies how \code{\link{future}()}:s are resolved,
#' e.g. sequentially or in parallel.
#'
#' @param strategy The evaluation function (or name of it) to use
#' for resolving a future. If NULL, then the current strategy is returned.
#'
#' @param \dots Additional arguments overriding the default arguments
#' of the evaluation function. Which additional arguments are supported
#' depends on what evaluation function is used, e.g. several support
#' argument \code{workers} but not all. For details, see the individual
#' functions of which some are linked to below.
#"
#' @param substitute If TRUE, the \code{strategy} expression is
#' \code{substitute()}:d, otherwise not.
#'
#' @param .call (internal) Used for recording the call to this function.
#'
#' @param .skip (internal) If \code{TRUE}, then attempts to set a strategy
#' that is the same as what is currently in use, will skipped.
#'
#' @param .cleanup (internal) Used to stop implicitly started clusters.
#'
#' @param .init (internal) Used to initiate workers.
#'
#' @return If a new strategy is chosen, then the previous one is returned
#' (invisible), otherwise the current one is returned (visibly).
#'
#' @example incl/plan.R
#'
#' @details
#' The default strategy is \code{\link{sequential}}, but the default can be
#' configured by option \option{future.plan} and, if that is not set,
#' system environment variable \env{R_FUTURE_PLAN}.
#' To reset the strategy back to the default, use \code{plan("default")}.
#'
#' @section Implemented evaluation strategies:
#' \itemize{
#' \item{\code{\link{sequential}}:}{
#' Resolves futures sequentially in the current \R process.
#' }
#' \item{\code{\link{transparent}}:}{
#' Resolves futures sequentially in the current \R process and
#' assignments will be done to the calling environment.
#' Early stopping is enabled by default.
#' }
#' \item{\code{\link{multisession}}:}{
#' Resolves futures asynchronously (in parallel) in separate
#' \R sessions running in the background on the same machine.
#' }
#' \item{\code{\link{multicore}}:}{
#' Resolves futures asynchronously (in parallel) in separate
#' \emph{forked} \R processes running in the background on
#' the same machine. Not supported on Windows.
#' }
#' \item{\code{\link{multiprocess}}:}{
#' If multicore evaluation is supported, that will be used,
#' otherwise multisession evaluation will be used.
#' }
#' \item{\code{\link{cluster}}:}{
#' Resolves futures asynchronously (in parallel) in separate
#' \R sessions running typically on one or more machines.
#' }
#' \item{\code{\link{remote}}:}{
#' Resolves futures asynchronously in a separate \R session
#' running on a separate machine, typically on a different
#' network.
#' }
#' }
#'
#' Other package may provide additional evaluation strategies.
#' Notably, the \pkg{future.batchtools} package implements a
#' type of futures that will be resolved via job schedulers
#' that are typically available on high-performance compute
#' (HPC) clusters, e.g. LSF, Slurm, TORQUE/PBS, Sun Grid Engine,
#' and OpenLava.
#'
#' To "close" any background workers (e.g. \code{multisession}), change
#' the plan to something different; \code{plan(sequential)} is recommended
#' for this.
#'
#' @section For package developers:
#' Please refrain from modifying the future strategy inside your packages /
#' functions, i.e. do not call \code{plan()} in your code. Instead, leave
#' the control on what backend to use to the end user. This idea is part of
#' the core philosophy of the future framework - as a developer you can never
#' know what future backends the user have access to. Moreover, by not making
#' any assumptions about what backends are available, your code will also work
#' automatically will any new backends developed after you wrote your code.
#'
#' If you think it is necessary to modify the future strategy within a
#' function, then make sure to undo the changes when exiting the function.
#' This can be done using:
#' \preformatted{
#' oplan <- plan()
#' on.exit(plan(oplan), add = TRUE)
#' [...]
#' }
#'
#' @section Using plan() in scripts and vignettes:
#' When writing scripts or vignettes that uses futures, try to place any
#' call to \code{plan()} as far up (as early on) in the code as possible.
#' This will help users to quickly identify where the future plan is set up
#' and allow them to modify it to their computational resources.
#' Even better is to leave it to the user to set the \code{plan()} prior to
#' \code{source()}:ing the script or running the vignette.
#' If a \file{\link{.future.R}} exists in the current directory and / or in
#' the user's home directory, it is sourced when the \pkg{future} package is
#' \emph{loaded}. Because of this, the \file{.future.R} file provides a
#' convenient place for users to set the \code{plan()}.
#'
#' @importFrom utils capture.output
#' @export
plan <- local({
defaultStrategy <- structure(sequential, call = substitute(plan(sequential)))
defaultStack <- structure(list(defaultStrategy),
class = c("FutureStrategyList", "list"))
## Stack of type of futures to use
stack <- defaultStack
plan_cleanup <- function() {
ClusterRegistry(action = "stop")
}
plan_init <- function() {
evaluator <- stack[[1L]]
init <- attr(evaluator, "init", exact = TRUE)
if (identical(init, TRUE)) {
debug <- getOption("future.debug", FALSE)
if (debug) {
mdebug("plan(): plan_init() of %s ...",
paste(sQuote(class(evaluator)), collapse = ", "))
mdebug(paste(capture.output(print(evaluator)), collapse = "\n"))
}
## IMPORANT: Initiate only once. This avoids an infinite
## recursive loop caused by other plan() calls.
attr(evaluator, "init") <- "done"
stack[[1L]] <<- evaluator
## Create dummy future to trigger setup (minimum overhead)
f <- evaluator(NA, label = "future-plan-test",
globals = FALSE, lazy = FALSE)
## Cleanup, by resolving it
## (otherwise the garbage collector would have to do it)
res <- tryCatch({
value(f)
}, FutureError = identity)
if (inherits(res, "FutureError")) {
res$message <- paste0(
"Initialization of plan() failed, because the test future used for validation failed. The reason was: ", conditionMessage(res))
stop(res)
}
if (!identical(res, NA)) {
stop(FutureError("Initialization of plan() failed, because the value of the test future is not the expected one: ", sQuote(res)))
}
if (debug) {
mdebug("plan(): plan_init() of %s ... DONE",
paste(sQuote(class(evaluator)), collapse = ", "))
}
}
}
equal_strategy_stacks <- function(stack, other) {
stop_if_not(is.list(stack), is.list(other))
stack <- lapply(stack, FUN = function(s) { attr(s, "call") <- attr(s, "init") <- NULL; s })
other <- lapply(other, FUN = function(s) { attr(s, "call") <- attr(s, "init") <- NULL; s })
if (identical(stack, other)) return(TRUE)
if (isTRUE(all.equal(stack, other))) return(TRUE)
FALSE
}
plan_set <- function(newStack, skip = TRUE, cleanup = TRUE, init = TRUE) {
stop_if_not(!is.null(newStack), is.list(newStack), length(newStack) >= 1L)
oldStack <- stack
## Assign new stack
class(newStack) <- unique(c("FutureStrategyList", class(newStack)))
## Skip if already set?
if (skip && equal_strategy_stacks(newStack, oldStack)) {
if (getOption("future.debug", FALSE)) {
mdebug(paste0("plan(): Skip setting new future strategy stack because it is the same as the current one:\n",
paste(capture.output(print(newStack)), collapse = "\n"), "\n"))
}
return(oldStack)
}
if (getOption("future.debug", FALSE)) {
mdebug(paste0("plan(): Setting new future strategy stack:\n",
paste(capture.output(print(newStack)), collapse = "\n"), "\n"))
}
stack <<- newStack
## Stop any (implicitly started) clusters?
if (cleanup) plan_cleanup()
## Initiate future workers?
if (init) plan_init()
## Sanity checks
nbrOfWorkers <- nbrOfWorkers()
if (getOption("future.debug", FALSE)) {
mdebug(sprintf("plan(): nbrOfWorkers() = %g", nbrOfWorkers))
}
stop_if_not(is.numeric(nbrOfWorkers), length(nbrOfWorkers) == 1L,
!is.na(nbrOfWorkers), nbrOfWorkers >= 1L)
invisible(oldStack)
}
## Main function
function(strategy = NULL, ..., substitute = TRUE, .skip = FALSE, .call = TRUE,
.cleanup = TRUE, .init = TRUE) {
if (substitute) strategy <- substitute(strategy)
if (is.logical(.skip)) stop_if_not(length(.skip) == 1L, !is.na(.skip))
if (is.logical(.call)) stop_if_not(length(.call) == 1L, !is.na(.call))
## Predefined "actions":
if (is.null(strategy) || identical(strategy, "next")) {
## Next future strategy?
strategy <- stack[[1L]]
if (!inherits(strategy, "FutureStrategy")) {
class(strategy) <- c("FutureStrategy", class(strategy))
}
return(strategy)
} else if (identical(strategy, "default")) {
strategy <- getOption("future.plan", sequential)
} else if (identical(strategy, "list")) {
## List stack of future strategies?
return(stack)
} else if (identical(strategy, "reset")) {
## Reset stack of future strategies?
stack <<- defaultStack
## Stop any (implicitly started) clusters?
if (.cleanup) plan_cleanup()
return(stack)
} else if (identical(strategy, "pop")) {
## Pop strategy stack and return old stack
## (so it can be pushed back later)
oldStack <- stack
stack <<- stack[-1L]
if (length(stack) == 0L) stack <<- defaultStack
return(oldStack)
}
## Current and new stack of future strategies
oldStack <- stack
newStack <- NULL
## Arguments to be tweaked
targs <- list(...)
## Set new stack?
if (is.function(strategy)) {
strategy <- list(strategy)
}
if (is.list(strategy)) {
oldStack <- plan_set(strategy, skip = .skip, cleanup = .cleanup, init = .init)
return(invisible(oldStack[[1L]]))
}
## (a) Is a (plain) list of future strategies specified?
if (is.language(strategy)) {
first <- as.list(strategy)[[1]]
if (is.symbol(first)) {
first <- eval(first, envir = parent.frame(), enclos = baseenv())
## A list object, e.g. plan(oplan)?
if (is.list(first)) {
strategies <- first
res <- plan(strategies, substitute = FALSE,
.cleanup = .cleanup, .init = .init)
return(invisible(res))
}
## Example: plan(list(sequential, multicore))
if (is.function(first) && identical(first, list)) {
## Specified explicitly using plan(list(...))?
strategies <- eval(strategy, envir = parent.frame(), enclos = baseenv())
stop_if_not(is.list(strategies), length(strategies) >= 1L)
## Coerce strings to functions, e.g.
## plan(list("sequential", multicore))
for (kk in seq_along(strategies)) {
strategy_kk <- strategies[[kk]]
if (is.character(strategy_kk)) {
strategy_kk <- tweak(strategy_kk, penvir = parent.frame())
strategies[[kk]] <- strategy_kk
}
}
newStack <- strategies
stop_if_not(!is.null(newStack), is.list(newStack), length(newStack) >= 1L)
}
}
}
## (b) Otherwise, assume a single future strategy
if (is.null(newStack)) {
if (is.symbol(strategy)) {
strategy <- eval(strategy, envir = parent.frame(), enclos = baseenv())
} else if (is.language(strategy)) {
strategyT <- as.list(strategy)
## tweak(...)?
if (strategyT[[1]] == as.symbol("tweak")) {
strategy <- eval(strategy, envir = parent.frame(), enclos = baseenv())
} else {
isSymbol <- sapply(strategyT, FUN = is.symbol)
if (!all(isSymbol)) {
targs <- c(targs, strategyT[-1L])
strategy <- strategyT[[1L]]
}
strategy <- eval(strategy, envir = parent.frame(), enclos = baseenv())
}
}
## Tweak future strategy accordingly
args <- c(list(strategy), targs, penvir = parent.frame())
tstrategy <- do.call(tweak, args = args)
## Setup a new stack of future strategies (with a single one)
newStack <- list(tstrategy)
stop_if_not(!is.null(newStack), is.list(newStack), length(newStack) >= 1L)
}
## Attach call attribute to each strategy in the stack?
if (!is.null(.call)) {
## The call to assign
call <- if (isTRUE(.call)) sys.call() else .call
for (kk in seq_along(newStack)) {
strategy <- newStack[[kk]]
## Skip if already has a call attibute
if (!is.null(attr(strategy, "call", exact = TRUE))) next
## Attach call
attr(strategy, "call") <- call
newStack[[kk]] <- strategy
}
stop_if_not(!is.null(newStack), is.list(newStack), length(newStack) >= 1L)
}
## Set new strategy for futures
oldStack <- plan_set(newStack, skip = .skip, cleanup = .cleanup, init = .init)
invisible(oldStack[[1L]])
} # function()
}) # plan()
supportedStrategies <- function(strategies = c("sequential", "multicore",
"multisession", "multiprocess",
"cluster")) {
if (!supportsMulticore()) strategies <- setdiff(strategies, "multicore")
strategies
}
#' @importFrom utils capture.output
#' @export
print.future <- function(x, ...) {
class <- setdiff(class(x), c("FutureStrategy", "tweaked", "function"))
s <- sprintf("%s:", class[1])
specs <- list()
args <- args(x)
## Simplify the value on the 'workers' argument?
formals <- formals(args)
if (!is.atomic(formals$workers) && !is.language(formals$workers)) {
bfr <- capture.output(print(formals$workers))
if (length(bfr) > 6L) {
bfr2 <- capture.output(str(formals$workers))
if (length(bfr2) < length(bfr)) bfr <- bfr2
if (length(bfr) > 6L) bfr <- c(bfr[1:6], "...")
}
formals$workers <- paste0("<", paste(bfr, collapse = "; "), ">")
formals(args) <- formals
}
args <- deparse(args, width.cutoff = 500L)
args <- args[-length(args)]
args <- gsub("(^[ ]+|[ ]+$)", "", args)
args <- paste(args, collapse = " ")
specs$args <- args
specs$tweaked <- inherits(x, "tweaked")
specs$call <- paste(deparse(attr(x, "call", exact = TRUE),
width.cutoff = 500L),
collapse="")
specs <- paste0("- ", names(specs), ": ", unlist(specs))
s <- c(s, specs)
s <- paste(s, collapse = "\n")
cat(s, "\n", sep = "")
invisible(x)
}
#' @export
print.FutureStrategy <- print.future
#' @importFrom utils capture.output
#' @export
print.FutureStrategyList <- function(x, ...) {
s <- "List of future strategies:"
for (kk in seq_along(x)) {
x_kk <- x[[kk]]
class <- setdiff(class(x_kk), c("tweaked", "function"))
s_kk <- sprintf("%d. %s:", kk, class[1])
specs <- list()
args <- args(x_kk)
## Simplify the value on the 'workers' argument?
formals <- formals(args)
if (!is.atomic(formals$workers) && !is.language(formals$workers)) {
bfr <- capture.output(print(formals$workers))
if (length(bfr) > 6L) {
bfr2 <- capture.output(str(formals$workers))
if (length(bfr2) < length(bfr)) bfr <- bfr2
if (length(bfr) > 6L) bfr <- c(bfr[1:6], "...")
}
formals$workers <- paste0("<", paste(bfr, collapse = "; "), ">")
formals(args) <- formals
}
args <- deparse(args, width.cutoff = 500L)
args <- args[-length(args)]
args <- gsub("(^[ ]+|[ ]+$)", "", args)
args <- paste(args, collapse = " ")
specs$args <- args
specs$tweaked <- inherits(x_kk, "tweaked")
specs$call <- paste(deparse(attr(x_kk, "call", exact = TRUE),
width.cutoff = 500L),
collapse = "")
specs <- paste0(" - ", names(specs), ": ", unlist(specs))
s <- c(s, s_kk, specs)
}
s <- paste(s, collapse = "\n")
cat(s, "\n", sep = "")
invisible(x)
}
|