File: gbm-package.R

package info (click to toggle)
r-cran-gbm 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,244 kB
  • sloc: cpp: 7,368; ansic: 266; sh: 13; makefile: 9
file content (56 lines) | stat: -rw-r--r-- 2,382 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#' Generalized Boosted Regression Models (GBMs)
#' 
#' This package implements extensions to Freund and Schapire's AdaBoost
#' algorithm and J. Friedman's gradient boosting machine. Includes regression
#' methods for least squares, absolute loss, logistic, Poisson, Cox
#' proportional hazards partial likelihood, multinomial, t-distribution,
#' AdaBoost exponential loss, Learning to Rank, and Huberized hinge loss.
#' This gbm package is no longer under further development. Consider
#' https://github.com/gbm-developers/gbm3 for the latest version.
#' 
#' Further information is available in vignette: 
#' \code{browseVignettes(package = "gbm")}
#' 
#' @import lattice
#' 
#' @importFrom grDevices rainbow
#' @importFrom graphics abline axis barplot lines mtext par plot polygon rug 
#' @importFrom graphics segments title
#' @importFrom stats approx binomial delete.response gaussian glm loess 
#' @importFrom stats model.extract model.frame model.offset model.response 
#' @importFrom stats model.weights na.pass poisson predict quantile rbinom 
#' @importFrom stats reformulate reorder rexp rnorm runif sd supsmu terms var
#' @importFrom stats weighted.mean
#' @importFrom survival Surv
#' 
#' @useDynLib gbm, .registration = TRUE
#' 
#' 
#' @author Greg Ridgeway \email{gridge@@upenn.edu} with contributions by
#' Daniel Edwards, Brian Kriegler, Stefan Schroedl, Harry Southworth,
#' and Brandon Greenwell
#' 
#' @references 
#' Y. Freund and R.E. Schapire (1997) \dQuote{A decision-theoretic
#' generalization of on-line learning and an application to boosting,}
#' \emph{Journal of Computer and System Sciences,} 55(1):119-139.
#' 
#' G. Ridgeway (1999). \dQuote{The state of boosting,} \emph{Computing Science
#' and Statistics} 31:172-181.
#' 
#' J.H. Friedman, T. Hastie, R. Tibshirani (2000). \dQuote{Additive Logistic
#' Regression: a Statistical View of Boosting,} \emph{Annals of Statistics}
#' 28(2):337-374.
#' 
#' J.H. Friedman (2001). \dQuote{Greedy Function Approximation: A Gradient
#' Boosting Machine,} \emph{Annals of Statistics} 29(5):1189-1232.
#' 
#' J.H. Friedman (2002). \dQuote{Stochastic Gradient Boosting,}
#' \emph{Computational Statistics and Data Analysis} 38(4):367-378.
#' 
#' The \href{https://jerryfriedman.su.domains/R-MART.html}{MART} website.
#' 
#' @keywords package
"_PACKAGE"

NULL