1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
#' Growth curves of pigs in a 3x3 factorial experiment
#'
#' The \code{dietox} data frame has 861 rows and 7 columns.
#'
#' @details Data contains weight of slaughter pigs measured weekly for 12
#' weeks. Data also contains the startweight (i.e. the weight at week
#' 1). The treatments are 3 different levels of Evit = vitamin E (dose: 0,
#' 100, 200 mg dl-alpha-tocopheryl acetat /kg feed) in combination with 3
#' different levels of Cu=copper (dose: 0, 35, 175 mg/kg feed) in the feed.
#' The cumulated feed intake is also recorded. The pigs are littermates.
#'
#'
#' @format This data frame contains the following columns:
#'
#' \describe{
#' \item{Weight}{Weight in Kg}
#' \item{Feed}{Cumulated feed intake in Kg}
#' \item{Time}{Time (in weeks) in the experiment}
#' \item{Pig}{Factor; id of each pig}
#' \item{Evit}{Factor; vitamin E dose; see 'details'.}
#' \item{Cu}{Factor, copper dose; see 'details'}
#' \item{Start}{Start weight in experiment, i.e. weight at week 1.}
#' \item{Litter}{Factor, id of litter of each pig}
#' }
#'
#' @source Lauridsen, C., Højsgaard, S.,Sørensen, M.T. C. (1999) Influence of
#' Dietary Rapeseed Oli, Vitamin E, and Copper on Performance and
#' Antioxidant and Oxidative Status of Pigs. J. Anim. Sci.77:906-916
#' @keywords datasets
#' @examples
#'
#' data(dietox)
#' head(dietox)
#' \dontrun{
#' if (require(ggplot2)){
#' qplot(Time, Weight, data=dietox, col=Pig) + geom_line() +
#' theme(legend.position = "none") + facet_grid(Evit~Cu)
#' } else {
#' coplot(Weight ~ Time | Evit * Cu, data=dietox)
#' }
#' }
"dietox"
#' Ordinal Data from Koch
#'
#' The \code{koch} data frame has 288 rows and 4 columns.
#'
#' @format This data frame contains the following columns:
#' \describe{
#' \item{trt}{a numeric vector}
#' \item{day}{a numeric vector}
#' \item{y}{an ordered factor with levels: \code{1} < \code{2} < \code{3}}
#' \item{id}{a numeric vector}
#' }
#'
#' @keywords datasets
#' @examples
#'
#' data(koch)
#' fit <- ordgee(ordered(y) ~ trt + as.factor(day), id=id, data=koch, corstr="exch")
#' summary(fit)
#'
"koch"
#' Data on Obesity from the Muscatine Coronary Risk Factor Study.
#'
#' The data are from the Muscatine Coronary Risk Factor (MCRF) study,
#' a longitudinal survey of school-age children in Muscatine, Iowa.
#' The MCRF study had the goal of examining the development and
#' persistence of risk factors for coronary disease in children. In
#' the MCRF study, weight and height measurements of five cohorts of
#' children, initially aged 5-7, 7-9, 9-11, 11-13, and 13-15 years,
#' were obtained biennially from 1977 to 1981. Data were collected on
#' 4856 boys and girls. On the basis of a comparison of their weight
#' to age-gender specific norms, children were classified as obese or
#' not obese.
#'
#' @format A dataframe with 14568 rows and 7 variables:
#' \describe{
#' \item{id}{identifier of child.}
#'
#' \item{gender}{gender of child}
#'
#' \item{base_age}{baseline age}
#'
#' \item{age}{current age}
#'
#' \item{occasion}{identifier of occasion of recording}
#'
#' \item{obese}{'yes' or 'no'}
#'
#' \item{numobese}{obese in numerical form: 1 corresponds to 'yes'
#' and 0 corresponds to 'no'.}
#'
#' }
#' @source
#'
#' \url{https://content.sph.harvard.edu/fitzmaur/ala2e/muscatine.txt}
#'
#' Woolson, R.F. and Clarke, W.R. (1984). Analysis of categorical
#' incompletel longitudinal data. Journal of the Royal Statistical Society,
#' Series A, 147, 87-99.
#'
#' @examples
#' muscatine$cage <- muscatine$age - 12
#' muscatine$cage2 <- muscatine$cage^2
#'
#' f1 <- numobese ~ gender
#' f2 <- numobese ~ gender + cage + cage2 +
#' gender:cage + gender:cage2
#'
#' gee1 <- geeglm(formula = f1, id = id,
#' waves = occasion, data = muscatine, family = binomial(),
#' corstr = "independence")
#'
#' gee2 <- geeglm(formula = f2, id = id,
#' waves = occasion, data = muscatine, family = binomial(),
#' corstr = "independence")
#'
#' tidy(gee1)
#' tidy(gee2)
#' QIC(gee1)
#' QIC(gee2)
#'
#'
"muscatine"
#' Ohio Children Wheeze Status
#'
#' The \code{ohio} data frame has 2148 rows and 4 columns. The dataset is a
#' subset of the six-city study, a longitudinal study of the health effects of
#' air pollution.
#'
#' @format This data frame contains the following columns:
#'
#' \describe{
#'
#' \item{resp}{an indicator of wheeze status (1=yes, 0=no)}
#'
#' \item{id}{a numeric vector for subject id}
#'
#' \item{age}{a numeric vector of age, 0 is 9 years old}
#'
#' \item{smoke}{an indicator of maternal smoking at the first
#' year of the study}
#' }
#'
#' @references Fitzmaurice, G.M. and Laird, N.M. (1993) A likelihood-based
#' method for analyzing longitudinal binary responses, \emph{Biometrika}
#' \bold{80}: 141--151.
#'
#' @keywords datasets
#' @examples
#'
#' data(ohio)
#'
#' fit.ex <- geeglm(resp ~ age + smoke + age:smoke, id=id, data=ohio,
#' family=binomial, corstr="exch", scale.fix=TRUE)
#' QIC(fit.ex)
#'
#' fit.ar <- geeglm(resp ~ age + smoke + age:smoke, id=id, data=ohio,
#' family=binomial, corstr="ar1", scale.fix=TRUE)
#' QIC(fit.ex)
"ohio"
#' Clustered Ordinal Respiratory Disorder
#'
#' The \code{respdis} data frame has 111 rows and 3 columns. The study described
#' in Miller et. al. (1993) is a randomized clinical trial of a new treatment of
#' respiratory disorder. The study was conducted in 111 patients who were
#' randomly assigned to one of two treatments (active, placebo). At each of four
#' visits during the follow-up period, the response status of each patients was
#' classified on an ordinal scale.
#'
#'
#' @format This data frame contains the following columns:
#' \describe{
#'
#' \item{y1, y2, y3, y4}{ordered factor measured at 4 visits for the response with
#' levels, \code{1} < \code{2} < \code{3}, 1 = poor, 2 = good, and 3 =
#' excellent}
#'
#' \item{trt}{a factor for treatment with levels, 1 = active, 0 =
#' placebo.}
#'
#' }
#'
#' @references Miller, M.E., David, C.S., and Landis, R.J. (1993) The analysis
#' of longitudinal polytomous data: Generalized estimating equation and
#' connections with weighted least squares, \emph{Biometrics} \bold{49}:
#' 1033-1048.
#' @keywords datasets
#' @examples
#'
#' data(respdis)
#' resp.l <- reshape(respdis, varying = list(c("y1", "y2", "y3", "y4")),
#' v.names = "resp", direction = "long")
#' resp.l <- resp.l[order(resp.l$id, resp.l$time),]
#' fit <- ordgee(ordered(resp) ~ trt, id = id, data = resp.l, int.const = FALSE)
#' summary(fit)
#'
#' z <- model.matrix( ~ trt - 1, data = respdis)
#' ind <- rep(1:111, 4*3/2 * 2^2)
#' zmat <- z[ind,,drop=FALSE]
#' fit <- ordgee(ordered(resp) ~ trt, id = id, data = resp.l, int.const = FALSE,
#' z = zmat, corstr = "exchangeable")
#' summary(fit)
#'
"respdis"
#' Data from a clinical trial comparing two treatments for a respiratory
#' illness
#'
#' The data are from a clinical trial of patients with respiratory illness,
#' where 111 patients from two different clinics were randomized to receive
#' either placebo or an active treatment. Patients were examined at baseline
#' and at four visits during treatment. The respiratory
#' status (categorized as 1 = good, 0 = poor) was determined at each
#' visit.
#'
#' @name respiratory
#' @aliases respiratory respiratoryWide
#' @docType data
#'
#' @format A data frame with 444 observations on the following 8 variables.
#'
#' \describe{
#'
#' \item{center}{a numeric vector}
#' \item{id}{a numeric vector}
#' \item{treat}{treatment or placebo}
#' \item{sex}{M or F}
#' \item{age}{in years at baseline}
#' \item{baseline}{resporatory status at baseline}
#' \item{visit}{id of each of four visits}
#' \item{outcome}{respiratory status at each visit}
#'
#' }
#'
#' @keywords datasets
#' @examples
#'
#' data(respiratory)
#' data(respiratory, package="geepack")
#' respiratory$center <- factor(respiratory$center)
#' head(respiratory)
#'
#' m1 <- glm(outcome ~ center + treat + age + baseline, data=respiratory,
#' family=binomial())
#' gee.ind <- geeglm(outcome ~ center + treat + age + baseline, data=respiratory, id=id,
#' family=binomial(), corstr="independence")
#' gee.exc <- geeglm(outcome ~ center + treat + age + baseline, data=respiratory, id=id,
#' family=binomial(), corstr="exchangeable")
#' gee.uns <- geeglm(outcome ~ center + treat + age + baseline, data=respiratory, id=id,
#' family=binomial(), corstr="unstructured")
#' gee.ar1 <- geeglm(outcome ~ center + treat + age + baseline, data=respiratory, id=id,
#' family=binomial(), corstr="ar1")
#'
#' mlist <- list(gee.ind, gee.exc, gee.uns, gee.ar1)
#' do.call(rbind, lapply(mlist, QIC))
#' lapply(mlist, tidy)
#'
"respiratory"
#' Epiliptic Seizures
#'
#' The \code{seizure} data frame has 59 rows and 7 columns. The dataset has the
#' number of epiliptic seizures in each of four two-week intervals, and in a
#' baseline eight-week inverval, for treatment and control groups with a total
#' of 59 individuals.
#'
#' @format This data frame contains the following columns: \describe{
#' \item{y1}{the number of epiliptic seizures in the 1st 2-week interval}
#' \item{y2}{the number of epiliptic seizures in the 2nd 2-week interval}
#' \item{y3}{the number of epiliptic seizures in the 3rd 2-week interval}
#' \item{y4}{the number of epiliptic seizures in the 4th 2-week interval}
#' \item{trt}{an indicator of treatment} \item{base}{the number of epilitic
#' seizures in a baseline 8-week interval} \item{age}{a numeric vector of
#' subject age} }
#' @references Diggle, P.J., Liang, K.Y., and Zeger, S.L. (1994) Analysis of
#' Longitudinal Data. Clarendon Press.
#' @source Thall, P.F. and Vail S.C. (1990) Some covariance models for
#' longitudinal count data with overdispersion. \emph{Biometrics} \bold{46}:
#' 657--671.
#' @keywords datasets
#' @examples
#'
#' data(seizure)
#' ## Diggle, Liang, and Zeger (1994) pp166-168, compare Table 8.10
#' seiz.l <- reshape(seizure,
#' varying=list(c("base","y1", "y2", "y3", "y4")),
#' v.names="y", times=0:4, direction="long")
#' seiz.l <- seiz.l[order(seiz.l$id, seiz.l$time),]
#' seiz.l$t <- ifelse(seiz.l$time == 0, 8, 2)
#' seiz.l$x <- ifelse(seiz.l$time == 0, 0, 1)
#' m1 <- geese(y ~ offset(log(t)) + x + trt + x:trt, id = id,
#' data=seiz.l, corstr="exch", family=poisson)
#' summary(m1)
#' m2 <- geese(y ~ offset(log(t)) + x + trt + x:trt, id = id,
#' data = seiz.l, subset = id!=49,
#' corstr = "exch", family=poisson)
#' summary(m2)
#'
#' ## Thall and Vail (1990)
#' seiz.l <- reshape(seizure, varying=list(c("y1","y2","y3","y4")),
#' v.names="y", direction="long")
#' seiz.l <- seiz.l[order(seiz.l$id, seiz.l$time),]
#' seiz.l$lbase <- log(seiz.l$base / 4)
#' seiz.l$lage <- log(seiz.l$age)
#' seiz.l$v4 <- ifelse(seiz.l$time == 4, 1, 0)
#' m3 <- geese(y ~ lbase + trt + lbase:trt + lage + v4,
#' sformula = ~ as.factor(time) - 1, id = id,
#' data = seiz.l, corstr = "exchangeable", family=poisson)
#' ## compare to Model 13 in Table 4, noticeable difference
#' summary(m3)
#'
#' ## set up a design matrix for the correlation
#' z <- model.matrix(~ age, data = seizure) # data is not seiz.l
#' ## just to illustrate the scale link and correlation link
#' m4 <- geese(y ~ lbase + trt + lbase:trt + lage + v4,
#' sformula = ~ as.factor(time)-1, id = id,
#' data = seiz.l, corstr = "ar1", family = poisson,
#' zcor = z, cor.link = "fisherz", sca.link = "log")
#' summary(m4)
#'
"seizure"
#' Growth of Sitka Spruce Trees
#'
#' Impact of ozone on the growth of sitka spruce trees.
#'
#' @format A dataframe
#'
#' \describe{
#' \item{size:}{size of the tree measured in \eqn{log(height*diamter^2)}}
#'
#' \item{time:}{days after the 1st january, 1988}
#'
#' \item{tree:}{id number of a tree}
#'
#' \item{treat:}{ozone: grown under ozone environment, control: ozone free}
#'
#' }
#' @keywords datasets
#' @examples
#'
#' data(sitka89)
#'
"sitka89"
#' Log-size of 79 Sitka spruce trees
#'
#' The \code{spruce} data frame has 1027 rows and 6 columns. The data consists
#' of measurements on 79 sitka spruce trees over two growing seasons. The trees
#' were grown in four controlled environment chambers, of which the first two,
#' containing 27 trees each, were treated with introduced ozone at 70 ppb whilst
#' the remaining two, containing 12 and 13 trees, were controls.
#'
#'
#' @format This data frame contains the following columns:
#'
#' \describe{
#'
#' \item{chamber}{a numeric vector of chamber numbers}
#'
#' \item{ozone}{a factor with levels \code{enriched} and \code{normal}}
#'
#' \item{id}{a numeric vector of tree id}
#'
#' \item{time}{a numeric vector of the time when the
#' measurements were taken, measured in days since Jan. 1, 1988}
#'
#' \item{wave}{a numeric vector of the measurement number} \item{logsize}{a
#' numeric vector of the log-size}
#'
#' }
#'
#' @source Diggle, P.J., Liang, K.Y., and Zeger, S.L. (1994) Analysis of
#' Longitudinal Data, Clarendon Press.
#' @keywords datasets
#' @examples
#'
#' data(spruce)
#' spruce$contr <- ifelse(spruce$ozone=="enriched", 0, 1)
#' sitka88 <- spruce[spruce$wave <= 5,]
#' sitka89 <- spruce[spruce$wave > 5,]
#' fit.88 <- geese(logsize ~ as.factor(wave) + contr +
#' I(time/100*contr) - 1,
#' id=id, data=sitka88, corstr="ar1")
#' summary(fit.88)
#'
#' fit.89 <- geese(logsize ~ as.factor(wave) + contr - 1,
#' id=id, data=sitka89, corstr="ar1")
#' summary(fit.89)
#'
"spruce"
|