File: control

package info (click to toggle)
r-cran-genieclust 1.1.3-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 580 kB
  • sloc: cpp: 4,650; makefile: 2
file content (42 lines) | stat: -rw-r--r-- 1,875 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Source: r-cran-genieclust
Section: gnu-r
Priority: optional
Maintainer: Debian R Packages Maintainers <r-pkg-team@alioth-lists.debian.net>
Uploaders: Andreas Tille <tille@debian.org>
Vcs-Browser: https://salsa.debian.org/r-pkg-team/r-cran-genieclust
Vcs-Git: https://salsa.debian.org/r-pkg-team/r-cran-genieclust.git
Homepage: https://cran.r-project.org/package=genieclust
Standards-Version: 4.6.2
Rules-Requires-Root: no
Build-Depends: debhelper-compat (= 13),
               dh-r,
               r-base-dev,
               r-cran-rcpp (>= 1.0.4)
Testsuite: autopkgtest-pkg-r

Package: r-cran-genieclust
Architecture: any
Depends: ${R:Depends},
         ${shlibs:Depends},
         ${misc:Depends}
Recommends: ${R:Recommends}
Suggests: ${R:Suggests}
Description: GNU R Genie++ Hierarchical Clustering Algorithm with Noise Points Detection
 A retake on the Genie algorithm - a robust hierarchical clustering
 method (Gagolewski, Bartoszuk, Cena, 2016
 <DOI:10.1016/j.ins.2016.05.003>). Now faster and more memory efficient;
 determining the whole hierarchy for datasets of 10M points in low
 dimensional Euclidean spaces or 100K points in high-dimensional ones
 takes only 1-2 minutes. Allows clustering with respect to mutual
 reachability distances so that it can act as a noise point detector or a
 robustified version of 'HDBSCAN*' (that is able to detect a predefined
 number of clusters and hence it does not dependent on the somewhat
 fragile 'eps' parameter).
 .
 The package also features an implementation of economic inequity indices
 (the Gini, Bonferroni index) and external cluster validity measures
 (partition similarity scores; e.g., the adjusted Rand, Fowlkes-Mallows,
 adjusted mutual information, pair sets index).
 .
 See also the 'Python' version of 'genieclust' available on 'PyPI', which
 supports sparse data, more metrics, and even larger datasets.