File: distmeshnd.R

package info (click to toggle)
r-cran-geometry 0.3-6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,184 kB
  • sloc: ansic: 366; xml: 202; sh: 13; makefile: 5
file content (188 lines) | stat: -rw-r--r-- 7,739 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
##' A simple mesh generator for non-convex regions in n-D space
##' 
##' An unstructured simplex requires a choice of meshpoints (vertex nodes) and
##' a triangulation.  This is a simple and short algorithm that improves the
##' quality of a mesh by relocating the meshpoints according to a relaxation
##' scheme of forces in a truss structure. The topology of the truss is reset
##' using Delaunay triangulation. A (sufficiently smooth) user supplied signed
##' distance function (\code{fd}) indicates if a given node is inside or
##' outside the region. Points outside the region are projected back to the
##' boundary.
##' 
##' This is an implementation of original Matlab software of Per-Olof Persson.
##' 
##' Excerpt (modified) from the reference below:
##' 
##' \sQuote{The algorithm is based on a mechanical analogy between a triangular
##' mesh and a n-D truss structure. In the physical model, the edges of the
##' Delaunay triangles of a set of points correspond to bars of a truss. Each
##' bar has a force-displacement relationship \eqn{f(\ell, \ell_{0})}{F(L,L0)}
##' depending on its current length \eqn{\ell}{L} and its unextended length
##' \eqn{\ell_{0}}{L0}.}
##' 
##' \sQuote{External forces on the structure come at the boundaries, on which
##' external forces have normal orientations. These external forces are just
##' large enough to prevent nodes from moving outside the boundary. The
##' position of the nodes are the unknowns, and are found by solving for a
##' static force equilibrium. The hope is that (when \code{fh = function(p)
##' return(rep(1,nrow(p)))}), the lengths of all the bars at equilibrium will
##' be nearly equal, giving a well-shaped triangular mesh.}
##' 
##' See the references below for all details. Also, see the comments in the
##' source file of \code{distmesh2d}.
##' 
##' @param fdist Vectorized signed distance function, for example
##' \code{\link{mesh.dsphere}}, accepting an \code{m}-by-\code{n}
##' matrix, where \code{m} is arbitrary, as the first argument.
##' @param fh Vectorized function, for example \code{\link{mesh.hunif}},
##' that returns desired edge length as a function of position.
##' Accepts an \code{m}-by-\code{n} matrix, where \code{n} is
##' arbitrary, as its first argument.
##' @param h Initial distance between mesh nodes.
##' @param box \code{2}-by-\code{n} matrix that specifies the bounding box.
##' (See \link{distmesh2d} for an example.)
##' @param pfix \code{nfix}-by-2 matrix with fixed node positions.
##' @param \dots parameters that are passed to \code{fdist} and \code{fh}
##' @param ptol Algorithm stops when all node movements are smaller than
##' \code{dptol}
##' @param ttol Controls how far the points can move (relatively) before a
##' retriangulation with \code{\link{delaunayn}}.
##' @param deltat Size of the time step in Eulers method.
##' @param geps Tolerance in the geometry evaluations.
##' @param deps Stepsize \eqn{\Delta x} in numerical derivative computation for
##' distance function.
##' @return \code{m}-by-\code{n} matrix with node positions.
##' @section Wishlist : \itemize{ \item*Implement in C/Fortran \item*Translate
##' other functions of the matlab package }
##' @author Raoul Grasman; translated from original Matlab sources of Per-Olof
##' Persson.
##' @seealso \code{\link{distmesh2d}}, \code{\link[tripack]{tri.mesh}},
##' \code{\link{delaunayn}}, \code{\link{mesh.dsphere}},
##' \code{\link{mesh.hunif}},\cr \code{\link{mesh.diff}},
##' \code{\link{mesh.union}}, \code{\link{mesh.intersect}}
##' @references \url{http://persson.berkeley.edu/distmesh/}
##' 
##' \cite{P.-O. Persson, G. Strang, A Simple Mesh Generator in MATLAB. SIAM
##' Review, Volume 46 (2), pp. 329-345, June 2004}
##' @keywords math optimize dplot graphs
##' @examples
##' 
##' \dontrun{
##' # examples distmeshnd
##' require(rgl)
##' 
##' fd = function(p, ...) sqrt((p^2)%*%c(1,1,1)) - 1
##'      # also predefined as `mesh.dsphere'
##' fh = function(p,...)  rep(1,nrow(p))
##'      # also predefined as `mesh.hunif'
##' bbox = matrix(c(-1,1),2,3)
##' p = distmeshnd(fd,fh,0.2,bbox, maxiter=100)
##'     # this may take a while:
##'     # press Esc to get result of current iteration
##' }
##'
##' @export
"distmeshnd"  <-
function (fdist, fh, h, box, pfix = array(dim = c(0, ncol(box))),
    ..., ptol = 0.001, ttol = 0.1, deltat = 0.1, geps = 0.1 *
        h, deps = sqrt(.Machine$double.eps) * h)
{
# %DISTMESHND N-D Mesh Generator using Distance Functions.
    dim = ncol(as.matrix(box))
    L0mult = 1 + 0.4/2^(dim - 1)
    rownorm2 = function(x) drop(sqrt((x^2) %*% rep(1, ncol(x))))

    # %1. Create initial distribution in bounding box
    if (dim == 1) {
        p = seq(box[1], box[2], by = h)
    }
    else {
        cbox = lapply(1:dim, function(ii) seq(box[1, ii], box[2,
            ii], by = h))
        p = do.call("expand.grid", cbox)
        p = as.matrix(p)
    }

    # %2. Remove points outside the region, apply the rejection method
    p = p[fdist(p, ...) < geps, ]
    r0 = fh(p, ...)
    p = rbind(pfix, p[stats::runif(nrow(p)) < min(r0)^dim/r0^dim, ])
    N = nrow(p)
    if (N <= dim + 1)
        stop("Not enough starting points inside boundary (is h0 too large?).")
    on.exit(return(invisible(p)))

    cat("Press esc if the mesh seems fine but the algorithm hasn't converged.\n")
    utils::flush.console()
    count = 0

    p0 = 1/.Machine$double.eps

    # mimick Matlab call ``localpairs=nchoosek(1:dim+1,2)'':
    localpairs = as.matrix(expand.grid(1:(dim + 1), 1:(dim + 1)))
    localpairs = localpairs[lower.tri(matrix(TRUE, dim + 1, dim + 1)), 2:1]

    while (TRUE) {
        if (max(rownorm2(p - p0)) > ttol * h) {
            # %3. Retriangulation by Delaunay:

            p0 = p
            t = delaunayn(p)
            pmid = matrix(0, nrow(t), dim)
            for (ii in 1:(dim + 1)) pmid = pmid + p[t[, ii],
                ]/(dim + 1)
            t = t[fdist(pmid, ...) < (-geps), ]
            pair = array(dim = c(0, 2))
            for (ii in 1:nrow(localpairs)) {
                pair = rbind(pair, t[, localpairs[ii, ]])
            }

            # %4. Describe each edge by a unique pair of nodes
            pair = Unique(pair, TRUE); # base-function `unique' is way too slow
            if (dim == 2) {
                trimesh(t, p[, 1:2])
            }
            else if (dim == 3) {
                if (count%%5 == 0) {
                  tetramesh(t, p)
                }
            }
            else {
                cat("Retriangulation #", 15, "\n")
                utils::flush.console()
            }
            count = count + 1
        }
        bars = p[pair[, 1], ] - p[pair[, 2], ]
        L = rownorm2(bars)
        L0 = fh((p[pair[, 1], ] + p[pair[, 2], ])/2, ...)
        L0 = L0 * L0mult * (sum(L^dim)/sum(L0^dim))^(1/dim)
        F = L0 - L
        F[F < 0] = 0
        Fbar = cbind(bars, -bars) * matrix(F/L, nrow = nrow(bars),
            ncol = 2 * dim)
        ii = pair[, t(matrix(1:2, 2, dim))]
        jj = rep(1, nrow(pair)) %o% c(1:dim, 1:dim)
        s = c(Fbar)
        ns = length(s)
        dp = matrix(0, N, dim)
        dp[1:(dim * N)] = rowsum(s, ii[1:ns] + ns * (jj[1:ns] -
            1))
        if (nrow(pfix) > 0)
            dp[1:nrow(pfix), ] = 0
        p = p + deltat * dp
        d = fdist(p, ...)
        ix = d > 0
        gradd = matrix(0, sum(ix), dim)
        for (ii in 1:dim) {
            a = rep(0, dim)
            a[ii] = deps
            d1x = fdist(p[ix, ] + rep(1, sum(ix)) %o% a, ...)
            gradd[, ii] = (d1x - d[ix])/deps
        }
        p[ix, ] = p[ix, ] - (d[ix] %o% rep(1, dim)) * gradd
        maxdp = max(deltat * rownorm2(dp[d < (-geps), ]))
        if (maxdp < ptol * h)
            break
    }
}