1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
##' Search for the enclosing Delaunay convex hull
##'
##' For \code{t = delaunay(cbind(x, y))}, where \code{(x, y)} is a 2D set of
##' points, \code{tsearch(x, y, t, xi, yi)} finds the index in \code{t}
##' containing the points \code{(xi, yi)}. For points outside the convex hull
##' the index is \code{NA}.
##'
##'
##' @param x X-coordinates of triangluation points
##' @param y Y-coordinates of triangluation points
##' @param t Triangulation, e.g. produced by \code{t = delaunayn(cbind(x, y))}
##' @param xi X-coordinates of points to test
##' @param yi Y-coordinates of points to test
##' @param bary If \code{TRUE} return barycentric coordinates as well as index
##' of triangle.
##' @return If \code{bary} is \code{FALSE}, the index in \code{t} containing
##' the points \code{(xi, yi)}. For points outside the convex hull the index
##' is \code{NA}. If \code{bary} is \code{TRUE}, a list containing:
##' \item{list("idx")}{the index in \code{t} containing the points \code{(xi,
##' yi)}} \item{list("p")}{a 3-column matrix containing the barycentric
##' coordinates with respect to the enclosing triangle of each point code(xi,
##' yi).}
##' @author David Sterratt
##' @note Based on the Octave function Copyright (C) 2007-2012 David Bateman.
##' @seealso tsearchn, delaunayn
##' @export
tsearch <- function(x, y, t, xi, yi, bary=FALSE) {
if (!is.vector(x)) {stop(paste(deparse(substitute(x)), "is not a vector"))}
if (!is.vector(y)) {stop(paste(deparse(substitute(y)), "is not a vector"))}
if (!is.matrix(t)) {stop(paste(deparse(substitute(t)), "is not a matrix"))}
if (!is.vector(xi)) {stop(paste(deparse(substitute(xi)), "is not a vector"))}
if (!is.vector(yi)) {stop(paste(deparse(substitute(yi)), "is not a vector"))}
if (length(x) != length(y)) {
stop(paste(deparse(substitute(x)), "is not same length as ", deparse(substitute(y))))
}
if (length(xi) != length(yi)) {
stop(paste(deparse(substitute(xi)), "is not same length as ", deparse(substitute(yi))))
}
if (ncol(t) != 3) {
stop(paste(deparse(substitute(t)), "does not have three columns"))
}
storage.mode(t) <- "integer"
out <- .Call("tsearch", as.double(x), as.double(y), t,
as.double(xi), as.double(yi), as.logical(bary))
if (bary) {
names(out) <- c("idx", "p")
}
return(out)
}
##' Search for the enclosing Delaunay convex hull
##'
##' For \code{t = delaunayn(x)}, where \code{x} is a set of points in \code{d}
##' dimensions, \code{tsearchn(x, t, xi)} finds the index in \code{t}
##' containing the points \code{xi}. For points outside the convex hull,
##' \code{idx} is \code{NA}. \code{tsearchn} also returns the barycentric
##' coordinates \code{p} of the enclosing triangles.
##'
##' @param x An \code{n}-by-\code{d} matrix. The rows of \code{x} represent
##' \code{n} points in \code{d}-dimensional space.
##' @param t A \code{m}-by-\code{d+1} matrix. A row of \code{t} contains
##' indices into \code{x} of the vertices of a \code{d}-dimensional simplex.
##' \code{t} is usually the output of delaunayn.
##' @param xi An \code{ni}-by-\code{d} matrix. The rows of \code{xi} represent
##' \code{n} points in \code{d}-dimensional space whose positions in the mesh
##' are being sought.
##' @param fast If the data is in 2D, use the fast C-based \code{tsearch}
##' function to produce the results.
##' @return A list containing: \item{list("idx")}{An \code{ni}-long vector
##' containing the indicies of the row of \code{t} in which each point in
##' \code{xi} is found.} \item{list("p")}{An \code{ni}-by-\code{d+1} matrix
##' containing the barycentric coordinates with respect to the enclosing
##' simplex of each point in \code{xi}.}
##' @author David Sterratt
##' @note Based on the Octave function Copyright (C) 2007-2012 David Bateman.
##' @seealso tsearch, delaunayn
##' @export
tsearchn <- function(x, t, xi, fast=TRUE) {
## Check input
if (!is.matrix(x)) {stop(paste(deparse(substitute(x)), "is not a matrix"))}
if (!is.matrix(t)) {stop(paste(deparse(substitute(t)), "is not a matrix"))}
if (!is.matrix(xi)) {stop(paste(deparse(substitute(xi)), "is not a matrix"))}
n <- dim(x)[2] # Number of dimensions
if (n==2 && fast) {
return(tsearch(x[,1], x[,2], t, xi[,1], xi[,2], bary=TRUE))
}
nt <- dim(t)[1] # Number of simplexes
m <- dim(x)[1] # Number of points in simplex grid
mi <- dim(xi)[1] # Number of points to search for
## If there are no points to search for, return an empty index
## vector and an empty coordinate matrix
if (mi==0) {
return(list(idx=c(), p=matrix(0, 0, n + 1)))
}
idx <- rep(NA, mi)
p <- matrix(NA, mi, n + 1)
## Indicies of points that still need to be searched for
ni <- 1:mi
degenerate.simplices <- c()
## Go through each simplex in turn
for (i in 1:nt) {
## Only calculate the Barycentric coordinates for points that have not
## already been found in a simplex.
b <- suppressWarnings(cart2bary(x[t[i,],], xi[ni,,drop=FALSE]))
if (is.null(b)) {
degenerate.simplices <- c(degenerate.simplices, i)
} else {
## Our points xi are in the current triangle if (all(b >= 0) &&
## all (b <= 1)). However as we impose that sum(b,2) == 1 we only
## need to test all(b>=0). Note that we need to add a small margin
## for rounding errors
intri <- apply(b >= -1e-12, 1, all)
## Set the simplex indicies of the points that have been found to
## this simplex
idx[ni[intri]] <- i
## Set the baryocentric coordinates of the points that have been found
p[ni[intri],] <- b[intri,]
## Remove these points from the search list
ni <- ni[!intri]
## If there are no more points to search for, give up
if (length(ni) == 0) { break }
}
}
if (length(degenerate.simplices) > 0) {
warning(paste("Degenerate simplices:", toString(degenerate.simplices)))
}
return(list(idx=idx, p=p))
}
##' Conversion of Cartesian to Barycentric coordinates.
##'
##' Given the Cartesian coordinates of one or more points, compute
##' the barycentric coordinates of these points with respect to a
##' simplex.
##'
##' Given a reference simplex in \eqn{N} dimensions represented by a
##' \eqn{N+1}-by-\eqn{N} matrix an arbitrary point \eqn{\mathbf{P}} in
##' Cartesian coordinates, represented by a 1-by-\eqn{N} row vector, can be
##' written as \deqn{\mathbf{P} = \mathbf{\beta}\mathbf{X}} where
##' \eqn{\mathbf{\beta}} is a \eqn{N+1} vector of the barycentric coordinates.
##' A criterion on \eqn{\mathbf{\beta}} is that \deqn{\sum_i\beta_i = 1} Now
##' partition the simplex into its first \eqn{N} rows \eqn{\mathbf{X}_N} and
##' its \eqn{N+1}th row \eqn{\mathbf{X}_{N+1}}. Partition the barycentric
##' coordinates into the first \eqn{N} columns \eqn{\mathbf{\beta}_N} and the
##' \eqn{N+1}th column \eqn{\beta_{N+1}}. This allows us to write
##' \deqn{\mathbf{P - X}_{N+1} = \mathbf{\beta}_N\mathbf{X}_N +
##' \mathbf{\beta}_{N+1}\mathbf{X}_{N+1} - \mathbf{X}_{N+1}} which can be
##' written \deqn{\mathbf{P - X}_{N+1} = \mathbf{\beta}_N(\mathbf{X}_N -
##' \mathbf{1}\mathbf{X}_{N+1})} where \eqn{\mathbf{1}} is a \eqn{N}-by-1
##' matrix of ones. We can then solve for \eqn{\mathbf{\beta}_N}:
##' \deqn{\mathbf{\beta}_N = (\mathbf{P - X}_{N+1})(\mathbf{X}_N -
##' \mathbf{1}\mathbf{X}_{N+1})^{-1}} and compute \deqn{\beta_{N+1} = 1 -
##' \sum_{i=1}^N\beta_i} This can be generalised for multiple values of
##' \eqn{\mathbf{P}}, one per row.
##'
##' @param X Reference simplex in \eqn{N} dimensions represented by a
##' \eqn{N+1}-by-\eqn{N} matrix
##' @param P \eqn{M}-by-\eqn{N} matrix in which each row is the Cartesian
##' coordinates of a point.
##' @return \eqn{M}-by-\eqn{N+1} matrix in which each row is the
##' barycentric coordinates of corresponding row of \code{P}. If the
##' simplex is degenerate a warning is issued and the function returns
##' \code{NULL}.
##' @author David Sterratt
##' @note Based on the Octave function by David Bateman.
##' @examples
##' ## Define simplex in 2D (i.e. a triangle)
##' X <- rbind(c(0, 0),
##' c(0, 1),
##' c(1, 0))
##' ## Cartesian cooridinates of points
##' P <- rbind(c(0.5, 0.5),
##' c(0.1, 0.8))
##' ## Plot triangle and points
##' trimesh(rbind(1:3), X)
##' text(X[,1], X[,2], 1:3) # Label vertices
##' points(P)
##' cart2bary(X, P)
##' @seealso bary2cart
##' @export
cart2bary <- function(X, P) {
M <- nrow(P)
N <- ncol(P)
if (ncol(X) != N) {
stop("Simplex X must have same number of columns as point matrix P")
}
if (nrow(X) != (N+1)) {
stop("Simplex X must have N columns and N+1 rows")
}
X1 <- X[1:N,] - (matrix(1,N,1) %*% X[N+1,,drop=FALSE])
if (rcond(X1) < .Machine$double.eps) {
warning("Degenerate simplex")
return(NULL)
}
Beta <- (P - matrix(X[N+1,], M, N, byrow=TRUE)) %*% solve(X1)
Beta <- cbind(Beta, 1 - apply(Beta, 1, sum))
return(Beta)
}
##' Conversion of Barycentric to Cartesian coordinates
##'
##' Given the baryocentric coordinates of one or more points with
##' respect to a simplex, compute the Cartesian coordinates of these
##' points.
##'
##' @param X Reference simplex in \eqn{N} dimensions represented by a
##' \eqn{N+1}-by-\eqn{N} matrix
##' @param Beta \eqn{M} points in baryocentric coordinates with
##' respect to the simplex \code{X} represented by a
##' \eqn{M}-by-\eqn{N+1} matrix
##' @return \eqn{M}-by-\eqn{N} matrix in which each row is the
##' Cartesian coordinates of corresponding row of \code{Beta}
##' @examples
##' ## Define simplex in 2D (i.e. a triangle)
##' X <- rbind(c(0, 0),
##' c(0, 1),
##' c(1, 0))
##' ## Cartesian cooridinates of points
##' beta <- rbind(c(0, 0.5, 0.5),
##' c(0.1, 0.8, 0.1))
##' ## Plot triangle and points
##' trimesh(rbind(1:3), X)
##' text(X[,1], X[,2], 1:3) # Label vertices
##' P <- bary2cart(X, beta)
##' points(P)
##' @seealso cart2bary
##' @author David Sterratt
##' @export
bary2cart <- function(X, Beta) {
return(Beta %*% X)
}
|