1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/distmeshnd.R
\name{distmeshnd}
\alias{distmeshnd}
\title{A simple mesh generator for non-convex regions in n-D space}
\usage{
distmeshnd(
fdist,
fh,
h,
box,
pfix = array(dim = c(0, ncol(box))),
...,
ptol = 0.001,
ttol = 0.1,
deltat = 0.1,
geps = 0.1 * h,
deps = sqrt(.Machine$double.eps) * h
)
}
\arguments{
\item{fdist}{Vectorized signed distance function, for example
\code{\link{mesh.dsphere}}, accepting an \code{m}-by-\code{n}
matrix, where \code{m} is arbitrary, as the first argument.}
\item{fh}{Vectorized function, for example \code{\link{mesh.hunif}},
that returns desired edge length as a function of position.
Accepts an \code{m}-by-\code{n} matrix, where \code{n} is
arbitrary, as its first argument.}
\item{h}{Initial distance between mesh nodes.}
\item{box}{\code{2}-by-\code{n} matrix that specifies the bounding box.
(See \link{distmesh2d} for an example.)}
\item{pfix}{\code{nfix}-by-2 matrix with fixed node positions.}
\item{\dots}{parameters that are passed to \code{fdist} and \code{fh}}
\item{ptol}{Algorithm stops when all node movements are smaller than
\code{dptol}}
\item{ttol}{Controls how far the points can move (relatively) before a
retriangulation with \code{\link{delaunayn}}.}
\item{deltat}{Size of the time step in Euler's method.}
\item{geps}{Tolerance in the geometry evaluations.}
\item{deps}{Stepsize \eqn{\Delta x} in numerical derivative computation for
distance function.}
}
\value{
\code{m}-by-\code{n} matrix with node positions.
}
\description{
An unstructured simplex requires a choice of mesh points (vertex nodes) and
a triangulation. This is a simple and short algorithm that improves the
quality of a mesh by relocating the mesh points according to a relaxation
scheme of forces in a truss structure. The topology of the truss is reset
using Delaunay triangulation. A (sufficiently smooth) user supplied signed
distance function (\code{fd}) indicates if a given node is inside or
outside the region. Points outside the region are projected back to the
boundary.
}
\details{
This is an implementation of original Matlab software of Per-Olof Persson.
Excerpt (modified) from the reference below:
\sQuote{The algorithm is based on a mechanical analogy between a triangular
mesh and a n-D truss structure. In the physical model, the edges of the
Delaunay triangles of a set of points correspond to bars of a truss. Each
bar has a force-displacement relationship \eqn{f(\ell, \ell_{0})}{F(L,L0)}
depending on its current length \eqn{\ell}{L} and its unextended length
\eqn{\ell_{0}}{L0}.}
\sQuote{External forces on the structure come at the boundaries, on which
external forces have normal orientations. These external forces are just
large enough to prevent nodes from moving outside the boundary. The
position of the nodes are the unknowns, and are found by solving for a
static force equilibrium. The hope is that (when \code{fh = function(p)
return(rep(1,nrow(p)))}), the lengths of all the bars at equilibrium will
be nearly equal, giving a well-shaped triangular mesh.}
See the references below for all details. Also, see the comments in the
source file of \code{distmesh2d}.
}
\section{Wishlist }{
\itemize{ \item Implement in C/Fortran \item Translate
other functions of the Matlab package }
}
\examples{
\dontrun{
# examples distmeshnd
require(rgl)
fd = function(p, ...) sqrt((p^2)\%*\%c(1,1,1)) - 1
# also predefined as `mesh.dsphere'
fh = function(p,...) rep(1,nrow(p))
# also predefined as `mesh.hunif'
bbox = matrix(c(-1,1),2,3)
p = distmeshnd(fd,fh,0.2,bbox, maxiter=100)
# this may take a while:
# press Esc to get result of current iteration
}
}
\references{
\url{http://persson.berkeley.edu/distmesh/}
\cite{P.-O. Persson, G. Strang, A Simple Mesh Generator in MATLAB. SIAM
Review, Volume 46 (2), pp. 329-345, June 2004}
}
\seealso{
\code{\link{distmesh2d}}, \code{\link[interp]{tri.mesh}},
\code{\link{delaunayn}}, \code{\link{mesh.dsphere}},
\code{\link{mesh.hunif}},\cr \code{\link{mesh.diff}},
\code{\link{mesh.union}}, \code{\link{mesh.intersect}}
}
\author{
Raoul Grasman; translated from original Matlab sources of Per-Olof
Persson.
}
\keyword{dplot}
\keyword{graphs}
\keyword{math}
\keyword{optimize}
|