File: geodesic.c

package info (click to toggle)
r-cran-geosphere 1.5-7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,312 kB
  • sloc: ansic: 1,789; makefile: 2
file content (2017 lines) | stat: -rw-r--r-- 70,537 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
// Version 1.46
// Date 2016-02-15

/**
 * \file geodesic.c
 * \brief Implementation of the geodesic routines in C
 *
 * For the full documentation see geodesic.h.
 **********************************************************************/

/** @cond SKIP */

/*
 * This is a C implementation of the geodesic algorithms described in
 *
 *   C. F. F. Karney,
 *   Algorithms for geodesics,
 *   J. Geodesy <b>87</b>, 43--55 (2013);
 *   https://dx.doi.org/10.1007/s00190-012-0578-z
 *   Addenda: http://geographiclib.sourceforge.net/geod-addenda.html
 *
 * See the comments in geodesic.h for documentation.
 *
 * Copyright (c) Charles Karney (2012-2016) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * http://geographiclib.sourceforge.net/
 */

#include "geodesic.h"
#include <math.h>

#define GEOGRAPHICLIB_GEODESIC_ORDER 6
#define nA1   GEOGRAPHICLIB_GEODESIC_ORDER
#define nC1   GEOGRAPHICLIB_GEODESIC_ORDER
#define nC1p  GEOGRAPHICLIB_GEODESIC_ORDER
#define nA2   GEOGRAPHICLIB_GEODESIC_ORDER
#define nC2   GEOGRAPHICLIB_GEODESIC_ORDER
#define nA3   GEOGRAPHICLIB_GEODESIC_ORDER
#define nA3x  nA3
#define nC3   GEOGRAPHICLIB_GEODESIC_ORDER
#define nC3x  ((nC3 * (nC3 - 1)) / 2)
#define nC4   GEOGRAPHICLIB_GEODESIC_ORDER
#define nC4x  ((nC4 * (nC4 + 1)) / 2)
#define nC    (GEOGRAPHICLIB_GEODESIC_ORDER + 1)

typedef double real;
typedef int boolx;

static unsigned init = 0;
static const int FALSE = 0;
static const int TRUE = 1;
static unsigned digits, maxit1, maxit2;
static real epsilon, realmin, pi, degree, NaN,
  tiny, tol0, tol1, tol2, tolb, xthresh;

static void Init() {
  if (!init) {
#if defined(__DBL_MANT_DIG__)
    digits = __DBL_MANT_DIG__;
#else
    digits = 53;
#endif
#if defined(__DBL_EPSILON__)
    epsilon = __DBL_EPSILON__;
#else
    epsilon = pow(0.5, digits - 1);
#endif
#if defined(__DBL_MIN__)
    realmin = __DBL_MIN__;
#else
    realmin = pow(0.5, 1022);
#endif
#if defined(M_PI)
    pi = M_PI;
#else
    pi = atan2(0.0, -1.0);
#endif
    maxit1 = 20;
    maxit2 = maxit1 + digits + 10;
    tiny = sqrt(realmin);
    tol0 = epsilon;
    /* Increase multiplier in defn of tol1 from 100 to 200 to fix inverse case
     * 52.784459512564 0 -52.784459512563990912 179.634407464943777557
     * which otherwise failed for Visual Studio 10 (Release and Debug) */
    tol1 = 200 * tol0;
    tol2 = sqrt(tol0);
    /* Check on bisection interval */
    tolb = tol0 * tol2;
    xthresh = 1000 * tol2;
    degree = pi/180;
    NaN = sqrt(-1.0);
    init = 1;
  }
}

enum captype {
  CAP_NONE = 0U,
  CAP_C1   = 1U<<0,
  CAP_C1p  = 1U<<1,
  CAP_C2   = 1U<<2,
  CAP_C3   = 1U<<3,
  CAP_C4   = 1U<<4,
  CAP_ALL  = 0x1FU,
  OUT_ALL  = 0x7F80U
};

static real sq(real x) { return x * x; }
static real log1px(real x) {
  volatile real
    y = 1 + x,
    z = y - 1;
  /* Here's the explanation for this magic: y = 1 + z, exactly, and z
   * approx x, thus log(y)/z (which is nearly constant near z = 0) returns
   * a good approximation to the true log(1 + x)/x.  The multiplication x *
   * (log(y)/z) introduces little additional error. */
  return z == 0 ? x : x * log(y) / z;
}

static real atanhx(real x) {
  real y = fabs(x);             /* Enforce odd parity */
  y = log1px(2 * y/(1 - y))/2;
  return x < 0 ? -y : y;
}

static real copysignx(real x, real y) {
  return fabs(x) * (y < 0 || (y == 0 && 1/y < 0) ? -1 : 1);
}

static real hypotx(real x, real y)
{ return sqrt(x * x + y * y); }

static real cbrtx(real x) {
  real y = pow(fabs(x), 1/(real)(3)); /* Return the real cube root */
  return x < 0 ? -y : y;
}

static real sumx(real u, real v, real* t) {
  volatile real s = u + v;
  volatile real up = s - v;
  volatile real vpp = s - up;
  up -= u;
  vpp -= v;
  if (t) *t = -(up + vpp);
  /* error-free sum:
   * u + v =       s      + t
   *       = round(u + v) + t */
  return s;
}

static real polyval(int N, const real p[], real x) {
  real y = N < 0 ? 0 : *p++;
  while (--N >= 0) y = y * x + *p++;
  return y;
}

/* mimic C++ std::min and std::max */
static real minx(real a, real b)
{ return (b < a) ? b : a; }

static real maxx(real a, real b)
{ return (a < b) ? b : a; }

static void swapx(real* x, real* y)
{ real t = *x; *x = *y; *y = t; }

static void norm2(real* sinx, real* cosx) {
  real r = hypotx(*sinx, *cosx);
  *sinx /= r;
  *cosx /= r;
}

static real AngNormalize(real x) {
  x = fmod(x, (real)(360));
  return x < -180 ? x + 360 : (x < 180 ? x : x - 360);
}

static real LatFix(real x)
{ return fabs(x) > 90 ? NaN : x; }

static real AngDiff(real x, real y, real* e) {
  real t, d = - AngNormalize(sumx(AngNormalize(x), AngNormalize(-y), &t));
  /* Here y - x = d - t (mod 360), exactly, where d is in (-180,180] and
   * abs(t) <= eps (eps = 2^-45 for doubles).  The only case where the
   * addition of t takes the result outside the range (-180,180] is d = 180
   * and t < 0.  The case, d = -180 + eps, t = eps, can't happen, since
   * sum would have returned the exact result in such a case (i.e., given t
   * = 0). */
  return sumx(d == 180 && t < 0 ? -180 : d, -t, e);
}

static real AngRound(real x) {
  const real z = 1/(real)(16);
  if (x == 0) return 0;
  volatile real y = fabs(x);
  /* The compiler mustn't "simplify" z - (z - y) to y */
  y = y < z ? z - (z - y) : y;
  return x < 0 ? -y : y;
}

static void sincosdx(real x, real* sinx, real* cosx) {
  /* In order to minimize round-off errors, this function exactly reduces
   * the argument to the range [-45, 45] before converting it to radians. */
  real r, s, c; int q;
  r = fmod(x, (real)(360));
  q = (int)(floor(r / 90 + (real)(0.5)));
  r -= 90 * q;
  /* now abs(r) <= 45 */
  r *= degree;
  /* Possibly could call the gnu extension sincos */
  s = sin(r); c = cos(r);
  switch ((unsigned)q & 3U) {
  case 0U: *sinx =     s; *cosx =     c; break;
  case 1U: *sinx =     c; *cosx = 0 - s; break;
  case 2U: *sinx = 0 - s; *cosx = 0 - c; break;
  default: *sinx = 0 - c; *cosx =     s; break; /* case 3U */
  }
}

static real atan2dx(real y, real x) {
  /* In order to minimize round-off errors, this function rearranges the
   * arguments so that result of atan2 is in the range [-pi/4, pi/4] before
   * converting it to degrees and mapping the result to the correct
   * quadrant. */
  int q = 0; real ang;
  if (fabs(y) > fabs(x)) { swapx(&x, &y); q = 2; }
  if (x < 0) { x = -x; ++q; }
  /* here x >= 0 and x >= abs(y), so angle is in [-pi/4, pi/4] */
  ang = atan2(y, x) / degree;
  switch (q) {
    /* Note that atan2d(-0.0, 1.0) will return -0.  However, we expect that
     * atan2d will not be called with y = -0.  If need be, include
     *
     *   case 0: ang = 0 + ang; break;
     */
  case 1: ang = (y > 0 ? 180 : -180) - ang; break;
  case 2: ang =  90 - ang; break;
  case 3: ang = -90 + ang; break;
  }
  return ang;
}

static void A3coeff(struct geod_geodesic* g);
static void C3coeff(struct geod_geodesic* g);
static void C4coeff(struct geod_geodesic* g);
static real SinCosSeries(boolx sinp,
                         real sinx, real cosx,
                         const real c[], int n);
static void Lengths(const struct geod_geodesic* g,
                    real eps, real sig12,
                    real ssig1, real csig1, real dn1,
                    real ssig2, real csig2, real dn2,
                    real cbet1, real cbet2,
                    real* ps12b, real* pm12b, real* pm0,
                    real* pM12, real* pM21,
                    /* Scratch area of the right size */
                    real Ca[]);
static real Astroid(real x, real y);
static real InverseStart(const struct geod_geodesic* g,
                         real sbet1, real cbet1, real dn1,
                         real sbet2, real cbet2, real dn2,
                         real lam12, real slam12, real clam12,
                         real* psalp1, real* pcalp1,
                         /* Only updated if return val >= 0 */
                         real* psalp2, real* pcalp2,
                         /* Only updated for short lines */
                         real* pdnm,
                         /* Scratch area of the right size */
                         real Ca[]);
static real Lambda12(const struct geod_geodesic* g,
                     real sbet1, real cbet1, real dn1,
                     real sbet2, real cbet2, real dn2,
                     real salp1, real calp1,
                     real slam120, real clam120,
                     real* psalp2, real* pcalp2,
                     real* psig12,
                     real* pssig1, real* pcsig1,
                     real* pssig2, real* pcsig2,
                     real* peps,
                     real* psomg12, real* pcomg12,
                     boolx diffp, real* pdlam12,
                     /* Scratch area of the right size */
                     real Ca[]);
static real A3f(const struct geod_geodesic* g, real eps);
static void C3f(const struct geod_geodesic* g, real eps, real c[]);
static void C4f(const struct geod_geodesic* g, real eps, real c[]);
static real A1m1f(real eps);
static void C1f(real eps, real c[]);
static void C1pf(real eps, real c[]);
static real A2m1f(real eps);
static void C2f(real eps, real c[]);
static int transit(real lon1, real lon2);
static int transitdirect(real lon1, real lon2);
static void accini(real s[]);
static void acccopy(const real s[], real t[]);
static void accadd(real s[], real y);
static real accsum(const real s[], real y);
static void accneg(real s[]);

void geod_init(struct geod_geodesic* g, real a, real f) {
  if (!init) Init();
  g->a = a;
  g->f = f;
  g->f1 = 1 - g->f;
  g->e2 = g->f * (2 - g->f);
  g->ep2 = g->e2 / sq(g->f1);   /* e2 / (1 - e2) */
  g->n = g->f / ( 2 - g->f);
  g->b = g->a * g->f1;
  g->c2 = (sq(g->a) + sq(g->b) *
           (g->e2 == 0 ? 1 :
            (g->e2 > 0 ? atanhx(sqrt(g->e2)) : atan(sqrt(-g->e2))) /
            sqrt(fabs(g->e2))))/2; /* authalic radius squared */
  /* The sig12 threshold for "really short".  Using the auxiliary sphere
   * solution with dnm computed at (bet1 + bet2) / 2, the relative error in the
   * azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2.  (Error
   * measured for 1/100 < b/a < 100 and abs(f) >= 1/1000.  For a given f and
   * sig12, the max error occurs for lines near the pole.  If the old rule for
   * computing dnm = (dn1 + dn2)/2 is used, then the error increases by a
   * factor of 2.)  Setting this equal to epsilon gives sig12 = etol2.  Here
   * 0.1 is a safety factor (error decreased by 100) and max(0.001, abs(f))
   * stops etol2 getting too large in the nearly spherical case. */
  g->etol2 = 0.1 * tol2 /
    sqrt( maxx((real)(0.001), fabs(g->f)) * minx((real)(1), 1 - g->f/2) / 2 );

  A3coeff(g);
  C3coeff(g);
  C4coeff(g);
}

static void geod_lineinit_int(struct geod_geodesicline* l,
                              const struct geod_geodesic* g,
                              real lat1, real lon1,
                              real azi1, real salp1, real calp1,
                              unsigned caps) {
  real cbet1, sbet1, eps;
  l->a = g->a;
  l->f = g->f;
  l->b = g->b;
  l->c2 = g->c2;
  l->f1 = g->f1;
  /* If caps is 0 assume the standard direct calculation */
  l->caps = (caps ? caps : GEOD_DISTANCE_IN | GEOD_LONGITUDE) |
    /* always allow latitude and azimuth and unrolling of longitude */
    GEOD_LATITUDE | GEOD_AZIMUTH | GEOD_LONG_UNROLL;

  l->lat1 = LatFix(lat1);
  l->lon1 = lon1;
  l->azi1 = azi1;
  l->salp1 = salp1;
  l->calp1 = calp1;

  sincosdx(AngRound(l->lat1), &sbet1, &cbet1); sbet1 *= l->f1;
  /* Ensure cbet1 = +epsilon at poles */
  norm2(&sbet1, &cbet1); cbet1 = maxx(tiny, cbet1);
  l->dn1 = sqrt(1 + g->ep2 * sq(sbet1));

  /* Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0), */
  l->salp0 = l->salp1 * cbet1; /* alp0 in [0, pi/2 - |bet1|] */
  /* Alt: calp0 = hypot(sbet1, calp1 * cbet1).  The following
   * is slightly better (consider the case salp1 = 0). */
  l->calp0 = hypotx(l->calp1, l->salp1 * sbet1);
  /* Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
   * sig = 0 is nearest northward crossing of equator.
   * With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
   * With bet1 =  pi/2, alp1 = -pi, sig1 =  pi/2
   * With bet1 = -pi/2, alp1 =  0 , sig1 = -pi/2
   * Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
   * With alp0 in (0, pi/2], quadrants for sig and omg coincide.
   * No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
   * With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi. */
  l->ssig1 = sbet1; l->somg1 = l->salp0 * sbet1;
  l->csig1 = l->comg1 = sbet1 != 0 || l->calp1 != 0 ? cbet1 * l->calp1 : 1;
  norm2(&l->ssig1, &l->csig1); /* sig1 in (-pi, pi] */
  /* norm2(somg1, comg1); -- don't need to normalize! */

  l->k2 = sq(l->calp0) * g->ep2;
  eps = l->k2 / (2 * (1 + sqrt(1 + l->k2)) + l->k2);

  if (l->caps & CAP_C1) {
    real s, c;
    l->A1m1 = A1m1f(eps);
    C1f(eps, l->C1a);
    l->B11 = SinCosSeries(TRUE, l->ssig1, l->csig1, l->C1a, nC1);
    s = sin(l->B11); c = cos(l->B11);
    /* tau1 = sig1 + B11 */
    l->stau1 = l->ssig1 * c + l->csig1 * s;
    l->ctau1 = l->csig1 * c - l->ssig1 * s;
    /* Not necessary because C1pa reverts C1a
     *    B11 = -SinCosSeries(TRUE, stau1, ctau1, C1pa, nC1p); */
  }

  if (l->caps & CAP_C1p)
    C1pf(eps, l->C1pa);

  if (l->caps & CAP_C2) {
    l->A2m1 = A2m1f(eps);
    C2f(eps, l->C2a);
    l->B21 = SinCosSeries(TRUE, l->ssig1, l->csig1, l->C2a, nC2);
  }

  if (l->caps & CAP_C3) {
    C3f(g, eps, l->C3a);
    l->A3c = -l->f * l->salp0 * A3f(g, eps);
    l->B31 = SinCosSeries(TRUE, l->ssig1, l->csig1, l->C3a, nC3-1);
  }

  if (l->caps & CAP_C4) {
    C4f(g, eps, l->C4a);
    /* Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0) */
    l->A4 = sq(l->a) * l->calp0 * l->salp0 * g->e2;
    l->B41 = SinCosSeries(FALSE, l->ssig1, l->csig1, l->C4a, nC4);
  }

  l->a13 = l->s13 = NaN;
}

void geod_lineinit(struct geod_geodesicline* l,
                   const struct geod_geodesic* g,
                   real lat1, real lon1, real azi1, unsigned caps) {
  azi1 = AngNormalize(azi1);
  real salp1, calp1;
  /* Guard against underflow in salp0 */
  sincosdx(AngRound(azi1), &salp1, &calp1);
  geod_lineinit_int(l, g, lat1, lon1, azi1, salp1, calp1, caps);
}

void geod_gendirectline(struct geod_geodesicline* l,
                        const struct geod_geodesic* g,
                        real lat1, real lon1, real azi1,
                        unsigned flags, real a12_s12,
                        unsigned caps) {
  geod_lineinit(l, g, lat1, lon1, azi1, caps);
  geod_gensetdistance(l, flags, a12_s12);
}

void geod_directline(struct geod_geodesicline* l,
                        const struct geod_geodesic* g,
                        real lat1, real lon1, real azi1,
                        real s12, unsigned caps) {
  geod_gendirectline(l, g, lat1, lon1, azi1, GEOD_NOFLAGS, s12, caps);
}

real geod_genposition(const struct geod_geodesicline* l,
                      unsigned flags, real s12_a12,
                      real* plat2, real* plon2, real* pazi2,
                      real* ps12, real* pm12,
                      real* pM12, real* pM21,
                      real* pS12) {
  real lat2 = 0, lon2 = 0, azi2 = 0, s12 = 0,
    m12 = 0, M12 = 0, M21 = 0, S12 = 0;
  /* Avoid warning about uninitialized B12. */
  real sig12, ssig12, csig12, B12 = 0, AB1 = 0;
  real omg12, lam12, lon12;
  real ssig2, csig2, sbet2, cbet2, somg2, comg2, salp2, calp2, dn2;
  unsigned outmask =
    (plat2 ? GEOD_LATITUDE : 0U) |
    (plon2 ? GEOD_LONGITUDE : 0U) |
    (pazi2 ? GEOD_AZIMUTH : 0U) |
    (ps12 ? GEOD_DISTANCE : 0U) |
    (pm12 ? GEOD_REDUCEDLENGTH : 0U) |
    (pM12 || pM21 ? GEOD_GEODESICSCALE : 0U) |
    (pS12 ? GEOD_AREA : 0U);

  outmask &= l->caps & OUT_ALL;
  if (!( TRUE /*Init()*/ &&
         (flags & GEOD_ARCMODE || (l->caps & (GEOD_DISTANCE_IN & OUT_ALL))) ))
    /* Uninitialized or impossible distance calculation requested */
    return NaN;

  if (flags & GEOD_ARCMODE) {
    /* Interpret s12_a12 as spherical arc length */
    sig12 = s12_a12 * degree;
    sincosdx(s12_a12, &ssig12, &csig12);
  } else {
    /* Interpret s12_a12 as distance */
    real
      tau12 = s12_a12 / (l->b * (1 + l->A1m1)),
      s = sin(tau12),
      c = cos(tau12);
    /* tau2 = tau1 + tau12 */
    B12 = - SinCosSeries(TRUE,
                         l->stau1 * c + l->ctau1 * s,
                         l->ctau1 * c - l->stau1 * s,
                         l->C1pa, nC1p);
    sig12 = tau12 - (B12 - l->B11);
    ssig12 = sin(sig12); csig12 = cos(sig12);
    if (fabs(l->f) > 0.01) {
      /* Reverted distance series is inaccurate for |f| > 1/100, so correct
       * sig12 with 1 Newton iteration.  The following table shows the
       * approximate maximum error for a = WGS_a() and various f relative to
       * GeodesicExact.
       *     erri = the error in the inverse solution (nm)
       *     errd = the error in the direct solution (series only) (nm)
       *     errda = the error in the direct solution (series + 1 Newton) (nm)
       *
       *       f     erri  errd errda
       *     -1/5    12e6 1.2e9  69e6
       *     -1/10  123e3  12e6 765e3
       *     -1/20   1110 108e3  7155
       *     -1/50  18.63 200.9 27.12
       *     -1/100 18.63 23.78 23.37
       *     -1/150 18.63 21.05 20.26
       *      1/150 22.35 24.73 25.83
       *      1/100 22.35 25.03 25.31
       *      1/50  29.80 231.9 30.44
       *      1/20   5376 146e3  10e3
       *      1/10  829e3  22e6 1.5e6
       *      1/5   157e6 3.8e9 280e6 */
      real serr;
      ssig2 = l->ssig1 * csig12 + l->csig1 * ssig12;
      csig2 = l->csig1 * csig12 - l->ssig1 * ssig12;
      B12 = SinCosSeries(TRUE, ssig2, csig2, l->C1a, nC1);
      serr = (1 + l->A1m1) * (sig12 + (B12 - l->B11)) - s12_a12 / l->b;
      sig12 = sig12 - serr / sqrt(1 + l->k2 * sq(ssig2));
      ssig12 = sin(sig12); csig12 = cos(sig12);
      /* Update B12 below */
    }
  }

  /* sig2 = sig1 + sig12 */
  ssig2 = l->ssig1 * csig12 + l->csig1 * ssig12;
  csig2 = l->csig1 * csig12 - l->ssig1 * ssig12;
  dn2 = sqrt(1 + l->k2 * sq(ssig2));
  if (outmask & (GEOD_DISTANCE | GEOD_REDUCEDLENGTH | GEOD_GEODESICSCALE)) {
    if (flags & GEOD_ARCMODE || fabs(l->f) > 0.01)
      B12 = SinCosSeries(TRUE, ssig2, csig2, l->C1a, nC1);
    AB1 = (1 + l->A1m1) * (B12 - l->B11);
  }
  /* sin(bet2) = cos(alp0) * sin(sig2) */
  sbet2 = l->calp0 * ssig2;
  /* Alt: cbet2 = hypot(csig2, salp0 * ssig2); */
  cbet2 = hypotx(l->salp0, l->calp0 * csig2);
  if (cbet2 == 0)
    /* I.e., salp0 = 0, csig2 = 0.  Break the degeneracy in this case */
    cbet2 = csig2 = tiny;
  /* tan(alp0) = cos(sig2)*tan(alp2) */
  salp2 = l->salp0; calp2 = l->calp0 * csig2; /* No need to normalize */

  if (outmask & GEOD_DISTANCE)
    s12 = flags & GEOD_ARCMODE ? l->b * ((1 + l->A1m1) * sig12 + AB1) : s12_a12;

  if (outmask & GEOD_LONGITUDE) {
    real E = copysignx(1, l->salp0); /* east or west going? */
    /* tan(omg2) = sin(alp0) * tan(sig2) */
    somg2 = l->salp0 * ssig2; comg2 = csig2;  /* No need to normalize */
    /* omg12 = omg2 - omg1 */
    omg12 = flags & GEOD_LONG_UNROLL
      ? E * (sig12
             - (atan2(    ssig2, csig2) - atan2(    l->ssig1, l->csig1))
             + (atan2(E * somg2, comg2) - atan2(E * l->somg1, l->comg1)))
      : atan2(somg2 * l->comg1 - comg2 * l->somg1,
              comg2 * l->comg1 + somg2 * l->somg1);
    lam12 = omg12 + l->A3c *
      ( sig12 + (SinCosSeries(TRUE, ssig2, csig2, l->C3a, nC3-1)
                 - l->B31));
    lon12 = lam12 / degree;
    lon2 = flags & GEOD_LONG_UNROLL ? l->lon1 + lon12 :
      AngNormalize(AngNormalize(l->lon1) + AngNormalize(lon12));
  }

  if (outmask & GEOD_LATITUDE)
    lat2 = atan2dx(sbet2, l->f1 * cbet2);

  if (outmask & GEOD_AZIMUTH)
    azi2 = atan2dx(salp2, calp2);

  if (outmask & (GEOD_REDUCEDLENGTH | GEOD_GEODESICSCALE)) {
    real
      B22 = SinCosSeries(TRUE, ssig2, csig2, l->C2a, nC2),
      AB2 = (1 + l->A2m1) * (B22 - l->B21),
      J12 = (l->A1m1 - l->A2m1) * sig12 + (AB1 - AB2);
    if (outmask & GEOD_REDUCEDLENGTH)
      /* Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure
       * accurate cancellation in the case of coincident points. */
      m12 = l->b * ((dn2 * (l->csig1 * ssig2) - l->dn1 * (l->ssig1 * csig2))
                    - l->csig1 * csig2 * J12);
    if (outmask & GEOD_GEODESICSCALE) {
      real t = l->k2 * (ssig2 - l->ssig1) * (ssig2 + l->ssig1) / (l->dn1 + dn2);
      M12 = csig12 + (t *  ssig2 -  csig2 * J12) * l->ssig1 / l->dn1;
      M21 = csig12 - (t * l->ssig1 - l->csig1 * J12) *  ssig2 /  dn2;
    }
  }

  if (outmask & GEOD_AREA) {
    real
      B42 = SinCosSeries(FALSE, ssig2, csig2, l->C4a, nC4);
    real salp12, calp12;
    if (l->calp0 == 0 || l->salp0 == 0) {
      /* alp12 = alp2 - alp1, used in atan2 so no need to normalize */
      salp12 = salp2 * l->calp1 - calp2 * l->salp1;
      calp12 = calp2 * l->calp1 + salp2 * l->salp1;
    } else {
      /* tan(alp) = tan(alp0) * sec(sig)
       * tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
       * = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
       * If csig12 > 0, write
       *   csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
       * else
       *   csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
       * No need to normalize */
      salp12 = l->calp0 * l->salp0 *
        (csig12 <= 0 ? l->csig1 * (1 - csig12) + ssig12 * l->ssig1 :
         ssig12 * (l->csig1 * ssig12 / (1 + csig12) + l->ssig1));
      calp12 = sq(l->salp0) + sq(l->calp0) * l->csig1 * csig2;
    }
    S12 = l->c2 * atan2(salp12, calp12) + l->A4 * (B42 - l->B41);
  }

  if (outmask & GEOD_LATITUDE)
    *plat2 = lat2;
  if (outmask & GEOD_LONGITUDE)
    *plon2 = lon2;
  if (outmask & GEOD_AZIMUTH)
    *pazi2 = azi2;
  if (outmask & GEOD_DISTANCE)
    *ps12 = s12;
  if (outmask & GEOD_REDUCEDLENGTH)
    *pm12 = m12;
  if (outmask & GEOD_GEODESICSCALE) {
    if (pM12) *pM12 = M12;
    if (pM21) *pM21 = M21;
  }
  if (outmask & GEOD_AREA)
    *pS12 = S12;

  return flags & GEOD_ARCMODE ? s12_a12 : sig12 / degree;
}

void geod_setdistance(struct geod_geodesicline* l, real s13) {
  l->s13 = s13;
  l->a13 = geod_genposition(l, GEOD_NOFLAGS, l->s13, 0, 0, 0, 0, 0, 0, 0, 0);
}

static void geod_setarc(struct geod_geodesicline* l, real a13) {
  l->a13 = a13; l->s13 = NaN;
  geod_genposition(l, GEOD_ARCMODE, l->a13, 0, 0, 0, &l->s13, 0, 0, 0, 0);
}

void geod_gensetdistance(struct geod_geodesicline* l,
 unsigned flags, real s13_a13) {
  flags & GEOD_ARCMODE ? geod_setarc(l, s13_a13) : geod_setdistance(l, s13_a13);
}

void geod_position(const struct geod_geodesicline* l, real s12,
                   real* plat2, real* plon2, real* pazi2) {
  geod_genposition(l, FALSE, s12, plat2, plon2, pazi2, 0, 0, 0, 0, 0);
}

real geod_gendirect(const struct geod_geodesic* g,
                    real lat1, real lon1, real azi1,
                    unsigned flags, real s12_a12,
                    real* plat2, real* plon2, real* pazi2,
                    real* ps12, real* pm12, real* pM12, real* pM21,
                    real* pS12) {
  struct geod_geodesicline l;
  unsigned outmask =
    (plat2 ? GEOD_LATITUDE : 0U) |
    (plon2 ? GEOD_LONGITUDE : 0U) |
    (pazi2 ? GEOD_AZIMUTH : 0U) |
    (ps12 ? GEOD_DISTANCE : 0U) |
    (pm12 ? GEOD_REDUCEDLENGTH : 0U) |
    (pM12 || pM21 ? GEOD_GEODESICSCALE : 0U) |
    (pS12 ? GEOD_AREA : 0U);

  geod_lineinit(&l, g, lat1, lon1, azi1,
                /* Automatically supply GEOD_DISTANCE_IN if necessary */
                outmask |
                (flags & GEOD_ARCMODE ? GEOD_NONE : GEOD_DISTANCE_IN));
  return geod_genposition(&l, flags, s12_a12,
                          plat2, plon2, pazi2, ps12, pm12, pM12, pM21, pS12);
}

void geod_direct(const struct geod_geodesic* g,
                 real lat1, real lon1, real azi1,
                 real s12,
                 real* plat2, real* plon2, real* pazi2) {
  geod_gendirect(g, lat1, lon1, azi1, GEOD_NOFLAGS, s12, plat2, plon2, pazi2,
                 0, 0, 0, 0, 0);
}

static real geod_geninverse_int(const struct geod_geodesic* g,
                                real lat1, real lon1, real lat2, real lon2,
                                real* ps12,
                                real* psalp1, real* pcalp1,
                                real* psalp2, real* pcalp2,
                                real* pm12, real* pM12, real* pM21,
                                real* pS12) {
  real s12 = 0, m12 = 0, M12 = 0, M21 = 0, S12 = 0;
  real lon12, lon12s;
  int latsign, lonsign, swapp;
  real sbet1, cbet1, sbet2, cbet2, s12x = 0, m12x = 0;
  real dn1, dn2, lam12, slam12, clam12;
  real a12 = 0, sig12, calp1 = 0, salp1 = 0, calp2 = 0, salp2 = 0;
  real Ca[nC];
  boolx meridian;
  /* somg12 > 1 marks that it needs to be calculated */
  real omg12 = 0, somg12 = 2, comg12 = 0;

  unsigned outmask =
    (ps12 ? GEOD_DISTANCE : 0U) |
    (pm12 ? GEOD_REDUCEDLENGTH : 0U) |
    (pM12 || pM21 ? GEOD_GEODESICSCALE : 0U) |
    (pS12 ? GEOD_AREA : 0U);

  outmask &= OUT_ALL;
  /* Compute longitude difference (AngDiff does this carefully).  Result is
   * in [-180, 180] but -180 is only for west-going geodesics.  180 is for
   * east-going and meridional geodesics. */
  lon12 = AngDiff(lon1, lon2, &lon12s);
  /* Make longitude difference positive. */
  lonsign = lon12 >= 0 ? 1 : -1;
  /* If very close to being on the same half-meridian, then make it so. */
  lon12 = lonsign * AngRound(lon12);
  lon12s = AngRound((180 - lon12) - lonsign * lon12s);
  lam12 = lon12 * degree;
  if (lon12 > 90) {
    sincosdx(lon12s, &slam12, &clam12);
    clam12 = -clam12;
  } else
    sincosdx(lon12, &slam12, &clam12);

  /* If really close to the equator, treat as on equator. */
  lat1 = AngRound(LatFix(lat1));
  lat2 = AngRound(LatFix(lat2));
  /* Swap points so that point with higher (abs) latitude is point 1
   * If one latitude is a nan, then it becomes lat1. */
  swapp = fabs(lat1) < fabs(lat2) ? -1 : 1;
  if (swapp < 0) {
    lonsign *= -1;
    swapx(&lat1, &lat2);
  }
  /* Make lat1 <= 0 */
  latsign = lat1 < 0 ? 1 : -1;
  lat1 *= latsign;
  lat2 *= latsign;
  /* Now we have
   *
   *     0 <= lon12 <= 180
   *     -90 <= lat1 <= 0
   *     lat1 <= lat2 <= -lat1
   *
   * longsign, swapp, latsign register the transformation to bring the
   * coordinates to this canonical form.  In all cases, 1 means no change was
   * made.  We make these transformations so that there are few cases to
   * check, e.g., on verifying quadrants in atan2.  In addition, this
   * enforces some symmetries in the results returned. */

  sincosdx(lat1, &sbet1, &cbet1); sbet1 *= g->f1;
  /* Ensure cbet1 = +epsilon at poles */
  norm2(&sbet1, &cbet1); cbet1 = maxx(tiny, cbet1);

  sincosdx(lat2, &sbet2, &cbet2); sbet2 *= g->f1;
  /* Ensure cbet2 = +epsilon at poles */
  norm2(&sbet2, &cbet2); cbet2 = maxx(tiny, cbet2);

  /* If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
   * |bet1| - |bet2|.  Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
   * a better measure.  This logic is used in assigning calp2 in Lambda12.
   * Sometimes these quantities vanish and in that case we force bet2 = +/-
   * bet1 exactly.  An example where is is necessary is the inverse problem
   * 48.522876735459 0 -48.52287673545898293 179.599720456223079643
   * which failed with Visual Studio 10 (Release and Debug) */

  if (cbet1 < -sbet1) {
    if (cbet2 == cbet1)
      sbet2 = sbet2 < 0 ? sbet1 : -sbet1;
  } else {
    if (fabs(sbet2) == -sbet1)
      cbet2 = cbet1;
  }

  dn1 = sqrt(1 + g->ep2 * sq(sbet1));
  dn2 = sqrt(1 + g->ep2 * sq(sbet2));

  meridian = lat1 == -90 || slam12 == 0;

  if (meridian) {

    /* Endpoints are on a single full meridian, so the geodesic might lie on
     * a meridian. */

    real ssig1, csig1, ssig2, csig2;
    calp1 = clam12; salp1 = slam12; /* Head to the target longitude */
    calp2 = 1; salp2 = 0;           /* At the target we're heading north */

    /* tan(bet) = tan(sig) * cos(alp) */
    ssig1 = sbet1; csig1 = calp1 * cbet1;
    ssig2 = sbet2; csig2 = calp2 * cbet2;

    /* sig12 = sig2 - sig1 */
    sig12 = atan2(maxx((real)(0), csig1 * ssig2 - ssig1 * csig2),
                  csig1 * csig2 + ssig1 * ssig2);
    Lengths(g, g->n, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
            cbet1, cbet2, &s12x, &m12x, 0,
            outmask & GEOD_GEODESICSCALE ? &M12 : 0,
            outmask & GEOD_GEODESICSCALE ? &M21 : 0,
            Ca);
    /* Add the check for sig12 since zero length geodesics might yield m12 <
     * 0.  Test case was
     *
     *    echo 20.001 0 20.001 0 | GeodSolve -i
     *
     * In fact, we will have sig12 > pi/2 for meridional geodesic which is
     * not a shortest path. */
    if (sig12 < 1 || m12x >= 0) {
      /* Need at least 2, to handle 90 0 90 180 */
      if (sig12 < 3 * tiny)
        sig12 = m12x = s12x = 0;
      m12x *= g->b;
      s12x *= g->b;
      a12 = sig12 / degree;
    } else
      /* m12 < 0, i.e., prolate and too close to anti-podal */
      meridian = FALSE;
  }

  if (!meridian &&
      sbet1 == 0 &&           /* and sbet2 == 0 */
      /* Mimic the way Lambda12 works with calp1 = 0 */
      (g->f <= 0 || lon12s >= g->f * 180)) {

    /* Geodesic runs along equator */
    calp1 = calp2 = 0; salp1 = salp2 = 1;
    s12x = g->a * lam12;
    sig12 = omg12 = lam12 / g->f1;
    m12x = g->b * sin(sig12);
    if (outmask & GEOD_GEODESICSCALE)
      M12 = M21 = cos(sig12);
    a12 = lon12 / g->f1;

  } else if (!meridian) {

    /* Now point1 and point2 belong within a hemisphere bounded by a
     * meridian and geodesic is neither meridional or equatorial. */

    /* Figure a starting point for Newton's method */
    real dnm = 0;
    sig12 = InverseStart(g, sbet1, cbet1, dn1, sbet2, cbet2, dn2,
                         lam12, slam12, clam12,
                         &salp1, &calp1, &salp2, &calp2, &dnm,
                         Ca);

    if (sig12 >= 0) {
      /* Short lines (InverseStart sets salp2, calp2, dnm) */
      s12x = sig12 * g->b * dnm;
      m12x = sq(dnm) * g->b * sin(sig12 / dnm);
      if (outmask & GEOD_GEODESICSCALE)
        M12 = M21 = cos(sig12 / dnm);
      a12 = sig12 / degree;
      omg12 = lam12 / (g->f1 * dnm);
    } else {

      /* Newton's method.  This is a straightforward solution of f(alp1) =
       * lambda12(alp1) - lam12 = 0 with one wrinkle.  f(alp) has exactly one
       * root in the interval (0, pi) and its derivative is positive at the
       * root.  Thus f(alp) is positive for alp > alp1 and negative for alp <
       * alp1.  During the course of the iteration, a range (alp1a, alp1b) is
       * maintained which brackets the root and with each evaluation of
       * f(alp) the range is shrunk, if possible.  Newton's method is
       * restarted whenever the derivative of f is negative (because the new
       * value of alp1 is then further from the solution) or if the new
       * estimate of alp1 lies outside (0,pi); in this case, the new starting
       * guess is taken to be (alp1a + alp1b) / 2. */
      real ssig1 = 0, csig1 = 0, ssig2 = 0, csig2 = 0, eps = 0;
      unsigned numit = 0;
      /* Bracketing range */
      real salp1a = tiny, calp1a = 1, salp1b = tiny, calp1b = -1;
      boolx tripn, tripb;
      for (tripn = FALSE, tripb = FALSE; numit < maxit2; ++numit) {
        /* the WGS84 test set: mean = 1.47, sd = 1.25, max = 16
         * WGS84 and random input: mean = 2.85, sd = 0.60 */
        real dv = 0,
          v = Lambda12(g, sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1,
                        slam12, clam12,
                        &salp2, &calp2, &sig12, &ssig1, &csig1, &ssig2, &csig2,
                        &eps, &somg12, &comg12, numit < maxit1, &dv, Ca);
        /* 2 * tol0 is approximately 1 ulp for a number in [0, pi]. */
        /* Reversed test to allow escape with NaNs */
        if (tripb || !(fabs(v) >= (tripn ? 8 : 1) * tol0)) break;
        /* Update bracketing values */
        if (v > 0 && (numit > maxit1 || calp1/salp1 > calp1b/salp1b))
          { salp1b = salp1; calp1b = calp1; }
        else if (v < 0 && (numit > maxit1 || calp1/salp1 < calp1a/salp1a))
          { salp1a = salp1; calp1a = calp1; }
        if (numit < maxit1 && dv > 0) {
          real
            dalp1 = -v/dv;
          real
            sdalp1 = sin(dalp1), cdalp1 = cos(dalp1),
            nsalp1 = salp1 * cdalp1 + calp1 * sdalp1;
          if (nsalp1 > 0 && fabs(dalp1) < pi) {
            calp1 = calp1 * cdalp1 - salp1 * sdalp1;
            salp1 = nsalp1;
            norm2(&salp1, &calp1);
            /* In some regimes we don't get quadratic convergence because
             * slope -> 0.  So use convergence conditions based on epsilon
             * instead of sqrt(epsilon). */
            tripn = fabs(v) <= 16 * tol0;
            continue;
          }
        }
        /* Either dv was not postive or updated value was outside legal
         * range.  Use the midpoint of the bracket as the next estimate.
         * This mechanism is not needed for the WGS84 ellipsoid, but it does
         * catch problems with more eccentric ellipsoids.  Its efficacy is
         * such for the WGS84 test set with the starting guess set to alp1 =
         * 90deg:
         * the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
         * WGS84 and random input: mean = 4.74, sd = 0.99 */
        salp1 = (salp1a + salp1b)/2;
        calp1 = (calp1a + calp1b)/2;
        norm2(&salp1, &calp1);
        tripn = FALSE;
        tripb = (fabs(salp1a - salp1) + (calp1a - calp1) < tolb ||
                 fabs(salp1 - salp1b) + (calp1 - calp1b) < tolb);
      }
      Lengths(g, eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
              cbet1, cbet2, &s12x, &m12x, 0,
              outmask & GEOD_GEODESICSCALE ? &M12 : 0,
              outmask & GEOD_GEODESICSCALE ? &M21 : 0, Ca);
      m12x *= g->b;
      s12x *= g->b;
      a12 = sig12 / degree;
    }
  }

  if (outmask & GEOD_DISTANCE)
    s12 = 0 + s12x;             /* Convert -0 to 0 */

  if (outmask & GEOD_REDUCEDLENGTH)
    m12 = 0 + m12x;             /* Convert -0 to 0 */

  if (outmask & GEOD_AREA) {
    real
      /* From Lambda12: sin(alp1) * cos(bet1) = sin(alp0) */
      salp0 = salp1 * cbet1,
      calp0 = hypotx(calp1, salp1 * sbet1); /* calp0 > 0 */
    real alp12;
    if (calp0 != 0 && salp0 != 0) {
      real
        /* From Lambda12: tan(bet) = tan(sig) * cos(alp) */
        ssig1 = sbet1, csig1 = calp1 * cbet1,
        ssig2 = sbet2, csig2 = calp2 * cbet2,
        k2 = sq(calp0) * g->ep2,
        eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2),
        /* Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0). */
        A4 = sq(g->a) * calp0 * salp0 * g->e2;
      real B41, B42;
      norm2(&ssig1, &csig1);
      norm2(&ssig2, &csig2);
      C4f(g, eps, Ca);
      B41 = SinCosSeries(FALSE, ssig1, csig1, Ca, nC4);
      B42 = SinCosSeries(FALSE, ssig2, csig2, Ca, nC4);
      S12 = A4 * (B42 - B41);
    } else
      /* Avoid problems with indeterminate sig1, sig2 on equator */
      S12 = 0;

    if (!meridian) {
      if (somg12 > 1) {
        somg12 = sin(omg12); comg12 = cos(omg12);
      } else
        norm2(&somg12, &comg12);
    }

    if (!meridian &&
        /* omg12 < 3/4 * pi */
        comg12 > -(real)(0.7071) &&     /* Long difference not too big */
        sbet2 - sbet1 < (real)(1.75)) { /* Lat difference not too big */
      /* Use tan(Gamma/2) = tan(omg12/2)
       * * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
       * with tan(x/2) = sin(x)/(1+cos(x)) */
      real
        domg12 = 1 + comg12, dbet1 = 1 + cbet1, dbet2 = 1 + cbet2;
      alp12 = 2 * atan2( somg12 * ( sbet1 * dbet2 + sbet2 * dbet1 ),
                         domg12 * ( sbet1 * sbet2 + dbet1 * dbet2 ) );
    } else {
      /* alp12 = alp2 - alp1, used in atan2 so no need to normalize */
      real
        salp12 = salp2 * calp1 - calp2 * salp1,
        calp12 = calp2 * calp1 + salp2 * salp1;
      /* The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
       * salp12 = -0 and alp12 = -180.  However this depends on the sign
       * being attached to 0 correctly.  The following ensures the correct
       * behavior. */
      if (salp12 == 0 && calp12 < 0) {
        salp12 = tiny * calp1;
        calp12 = -1;
      }
      alp12 = atan2(salp12, calp12);
    }
    S12 += g->c2 * alp12;
    S12 *= swapp * lonsign * latsign;
    /* Convert -0 to 0 */
    S12 += 0;
  }

  /* Convert calp, salp to azimuth accounting for lonsign, swapp, latsign. */
  if (swapp < 0) {
    swapx(&salp1, &salp2);
    swapx(&calp1, &calp2);
    if (outmask & GEOD_GEODESICSCALE)
      swapx(&M12, &M21);
  }

  salp1 *= swapp * lonsign; calp1 *= swapp * latsign;
  salp2 *= swapp * lonsign; calp2 *= swapp * latsign;

  if (psalp1) *psalp1 = salp1;
  if (pcalp1) *pcalp1 = calp1;
  if (psalp2) *psalp2 = salp2;
  if (pcalp2) *pcalp2 = calp2;

  if (outmask & GEOD_DISTANCE)
    *ps12 = s12;
  if (outmask & GEOD_REDUCEDLENGTH)
    *pm12 = m12;
  if (outmask & GEOD_GEODESICSCALE) {
    if (pM12) *pM12 = M12;
    if (pM21) *pM21 = M21;
  }
  if (outmask & GEOD_AREA)
    *pS12 = S12;

  /* Returned value in [0, 180] */
  return a12;
}

real geod_geninverse(const struct geod_geodesic* g,
                     real lat1, real lon1, real lat2, real lon2,
                     real* ps12, real* pazi1, real* pazi2,
                     real* pm12, real* pM12, real* pM21, real* pS12) {
  real salp1, calp1, salp2, calp2,
    a12 = geod_geninverse_int(g, lat1, lon1, lat2, lon2, ps12,
                              &salp1, &calp1, &salp2, &calp2,
                              pm12, pM12, pM21, pS12);
  if (pazi1) *pazi1 = atan2dx(salp1, calp1);
  if (pazi2) *pazi2 = atan2dx(salp2, calp2);
  return a12;
}

void geod_inverseline(struct geod_geodesicline* l,
                      const struct geod_geodesic* g,
                      real lat1, real lon1, real lat2, real lon2,
                      unsigned caps) {
  real salp1, calp1,
    a12 = geod_geninverse_int(g, lat1, lon1, lat2, lon2, 0,
                              &salp1, &calp1, 0, 0,
                              0, 0, 0, 0),
    azi1 = atan2dx(salp1, calp1);
  caps = caps ? caps : GEOD_DISTANCE_IN | GEOD_LONGITUDE;
  /* Ensure that a12 can be converted to a distance */
  if (caps & (OUT_ALL & GEOD_DISTANCE_IN)) caps |= GEOD_DISTANCE;
  geod_lineinit_int(l, g, lat1, lon1, azi1, salp1, calp1, caps);
  geod_setarc(l, a12);
}

void geod_inverse(const struct geod_geodesic* g,
                  real lat1, real lon1, real lat2, real lon2,
                  real* ps12, real* pazi1, real* pazi2) {
  geod_geninverse(g, lat1, lon1, lat2, lon2, ps12, pazi1, pazi2, 0, 0, 0, 0);
}

real SinCosSeries(boolx sinp, real sinx, real cosx, const real c[], int n) {
  /* Evaluate
   * y = sinp ? sum(c[i] * sin( 2*i    * x), i, 1, n) :
   *            sum(c[i] * cos((2*i+1) * x), i, 0, n-1)
   * using Clenshaw summation.  N.B. c[0] is unused for sin series
   * Approx operation count = (n + 5) mult and (2 * n + 2) add */
  real ar, y0, y1;
  c += (n + sinp);              /* Point to one beyond last element */
  ar = 2 * (cosx - sinx) * (cosx + sinx); /* 2 * cos(2 * x) */
  y0 = n & 1 ? *--c : 0; y1 = 0;          /* accumulators for sum */
  /* Now n is even */
  n /= 2;
  while (n--) {
    /* Unroll loop x 2, so accumulators return to their original role */
    y1 = ar * y0 - y1 + *--c;
    y0 = ar * y1 - y0 + *--c;
  }
  return sinp
    ? 2 * sinx * cosx * y0      /* sin(2 * x) * y0 */
    : cosx * (y0 - y1);         /* cos(x) * (y0 - y1) */
}

void Lengths(const struct geod_geodesic* g,
             real eps, real sig12,
             real ssig1, real csig1, real dn1,
             real ssig2, real csig2, real dn2,
             real cbet1, real cbet2,
             real* ps12b, real* pm12b, real* pm0,
             real* pM12, real* pM21,
             /* Scratch area of the right size */
             real Ca[]) {
  real m0 = 0, J12 = 0, A1 = 0, A2 = 0;
  real Cb[nC];

  /* Return m12b = (reduced length)/b; also calculate s12b = distance/b,
   * and m0 = coefficient of secular term in expression for reduced length. */
  boolx redlp = pm12b || pm0 || pM12 || pM21;
  if (ps12b || redlp) {
    A1 = A1m1f(eps);
    C1f(eps, Ca);
    if (redlp) {
      A2 = A2m1f(eps);
      C2f(eps, Cb);
      m0 = A1 - A2;
      A2 = 1 + A2;
    }
    A1 = 1 + A1;
  }
  if (ps12b) {
    real B1 = SinCosSeries(TRUE, ssig2, csig2, Ca, nC1) -
      SinCosSeries(TRUE, ssig1, csig1, Ca, nC1);
    /* Missing a factor of b */
    *ps12b = A1 * (sig12 + B1);
    if (redlp) {
      real B2 = SinCosSeries(TRUE, ssig2, csig2, Cb, nC2) -
        SinCosSeries(TRUE, ssig1, csig1, Cb, nC2);
      J12 = m0 * sig12 + (A1 * B1 - A2 * B2);
    }
  } else if (redlp) {
    /* Assume here that nC1 >= nC2 */
    int l;
    for (l = 1; l <= nC2; ++l)
      Cb[l] = A1 * Ca[l] - A2 * Cb[l];
    J12 = m0 * sig12 + (SinCosSeries(TRUE, ssig2, csig2, Cb, nC2) -
                        SinCosSeries(TRUE, ssig1, csig1, Cb, nC2));
  }
  if (pm0) *pm0 = m0;
  if (pm12b)
    /* Missing a factor of b.
     * Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure
     * accurate cancellation in the case of coincident points. */
    *pm12b = dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) -
      csig1 * csig2 * J12;
  if (pM12 || pM21) {
    real csig12 = csig1 * csig2 + ssig1 * ssig2;
    real t = g->ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2);
    if (pM12)
      *pM12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1;
    if (pM21)
      *pM21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2;
  }
}

real Astroid(real x, real y) {
  /* Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive root k.
   * This solution is adapted from Geocentric::Reverse. */
  real k;
  real
    p = sq(x),
    q = sq(y),
    r = (p + q - 1) / 6;
  if ( !(q == 0 && r <= 0) ) {
    real
      /* Avoid possible division by zero when r = 0 by multiplying equations
       * for s and t by r^3 and r, resp. */
      S = p * q / 4,            /* S = r^3 * s */
      r2 = sq(r),
      r3 = r * r2,
      /* The discriminant of the quadratic equation for T3.  This is zero on
       * the evolute curve p^(1/3)+q^(1/3) = 1 */
      disc = S * (S + 2 * r3);
    real u = r;
    real v, uv, w;
    if (disc >= 0) {
      real T3 = S + r3, T;
      /* Pick the sign on the sqrt to maximize abs(T3).  This minimizes loss
       * of precision due to cancellation.  The result is unchanged because
       * of the way the T is used in definition of u. */
      T3 += T3 < 0 ? -sqrt(disc) : sqrt(disc); /* T3 = (r * t)^3 */
      /* N.B. cbrtx always returns the real root.  cbrtx(-8) = -2. */
      T = cbrtx(T3);            /* T = r * t */
      /* T can be zero; but then r2 / T -> 0. */
      u += T + (T != 0 ? r2 / T : 0);
    } else {
      /* T is complex, but the way u is defined the result is real. */
      real ang = atan2(sqrt(-disc), -(S + r3));
      /* There are three possible cube roots.  We choose the root which
       * avoids cancellation.  Note that disc < 0 implies that r < 0. */
      u += 2 * r * cos(ang / 3);
    }
    v = sqrt(sq(u) + q);              /* guaranteed positive */
    /* Avoid loss of accuracy when u < 0. */
    uv = u < 0 ? q / (v - u) : u + v; /* u+v, guaranteed positive */
    w = (uv - q) / (2 * v);           /* positive? */
    /* Rearrange expression for k to avoid loss of accuracy due to
     * subtraction.  Division by 0 not possible because uv > 0, w >= 0. */
    k = uv / (sqrt(uv + sq(w)) + w);   /* guaranteed positive */
  } else {               /* q == 0 && r <= 0 */
    /* y = 0 with |x| <= 1.  Handle this case directly.
     * for y small, positive root is k = abs(y)/sqrt(1-x^2) */
    k = 0;
  }
  return k;
}

real InverseStart(const struct geod_geodesic* g,
                  real sbet1, real cbet1, real dn1,
                  real sbet2, real cbet2, real dn2,
                  real lam12, real slam12, real clam12,
                  real* psalp1, real* pcalp1,
                  /* Only updated if return val >= 0 */
                  real* psalp2, real* pcalp2,
                  /* Only updated for short lines */
                  real* pdnm,
                  /* Scratch area of the right size */
                  real Ca[]) {
  real salp1 = 0, calp1 = 0, salp2 = 0, calp2 = 0, dnm = 0;

  /* Return a starting point for Newton's method in salp1 and calp1 (function
   * value is -1).  If Newton's method doesn't need to be used, return also
   * salp2 and calp2 and function value is sig12. */
  real
    sig12 = -1,               /* Return value */
    /* bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0] */
    sbet12 = sbet2 * cbet1 - cbet2 * sbet1,
    cbet12 = cbet2 * cbet1 + sbet2 * sbet1;
  real sbet12a;
  boolx shortline = cbet12 >= 0 && sbet12 < (real)(0.5) &&
    cbet2 * lam12 < (real)(0.5);
  real somg12, comg12, ssig12, csig12;
#if defined(__GNUC__) && __GNUC__ == 4 &&       \
  (__GNUC_MINOR__ < 6 || defined(__MINGW32__))
  /* Volatile declaration needed to fix inverse cases
   * 88.202499451857 0 -88.202499451857 179.981022032992859592
   * 89.262080389218 0 -89.262080389218 179.992207982775375662
   * 89.333123580033 0 -89.333123580032997687 179.99295812360148422
   * which otherwise fail with g++ 4.4.4 x86 -O3 (Linux)
   * and g++ 4.4.0 (mingw) and g++ 4.6.1 (tdm mingw). */
  {
    volatile real xx1 = sbet2 * cbet1;
    volatile real xx2 = cbet2 * sbet1;
    sbet12a = xx1 + xx2;
  }
#else
  sbet12a = sbet2 * cbet1 + cbet2 * sbet1;
#endif
  if (shortline) {
    real sbetm2 = sq(sbet1 + sbet2), omg12;
    /* sin((bet1+bet2)/2)^2
     * =  (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2) */
    sbetm2 /= sbetm2 + sq(cbet1 + cbet2);
    dnm = sqrt(1 + g->ep2 * sbetm2);
    omg12 = lam12 / (g->f1 * dnm);
    somg12 = sin(omg12); comg12 = cos(omg12);
  } else {
    somg12 = slam12; comg12 = clam12;
  }

  salp1 = cbet2 * somg12;
  calp1 = comg12 >= 0 ?
    sbet12 + cbet2 * sbet1 * sq(somg12) / (1 + comg12) :
    sbet12a - cbet2 * sbet1 * sq(somg12) / (1 - comg12);

  ssig12 = hypotx(salp1, calp1);
  csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12;

  if (shortline && ssig12 < g->etol2) {
    /* really short lines */
    salp2 = cbet1 * somg12;
    calp2 = sbet12 - cbet1 * sbet2 *
      (comg12 >= 0 ? sq(somg12) / (1 + comg12) : 1 - comg12);
    norm2(&salp2, &calp2);
    /* Set return value */
    sig12 = atan2(ssig12, csig12);
  } else if (fabs(g->n) > (real)(0.1) || /* No astroid calc if too eccentric */
             csig12 >= 0 ||
             ssig12 >= 6 * fabs(g->n) * pi * sq(cbet1)) {
    /* Nothing to do, zeroth order spherical approximation is OK */
  } else {
    /* Scale lam12 and bet2 to x, y coordinate system where antipodal point
     * is at origin and singular point is at y = 0, x = -1. */
    real y, lamscale, betscale;
    /* Volatile declaration needed to fix inverse case
     * 56.320923501171 0 -56.320923501171 179.664747671772880215
     * which otherwise fails with g++ 4.4.4 x86 -O3 */
    volatile real x;
    real lam12x = atan2(-slam12, -clam12); /* lam12 - pi */
    if (g->f >= 0) {            /* In fact f == 0 does not get here */
      /* x = dlong, y = dlat */
      {
        real
          k2 = sq(sbet1) * g->ep2,
          eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2);
        lamscale = g->f * cbet1 * A3f(g, eps) * pi;
      }
      betscale = lamscale * cbet1;

      x = lam12x / lamscale;
      y = sbet12a / betscale;
    } else {                    /* f < 0 */
      /* x = dlat, y = dlong */
      real
        cbet12a = cbet2 * cbet1 - sbet2 * sbet1,
        bet12a = atan2(sbet12a, cbet12a);
      real m12b, m0;
      /* In the case of lon12 = 180, this repeats a calculation made in
       * Inverse. */
      Lengths(g, g->n, pi + bet12a,
              sbet1, -cbet1, dn1, sbet2, cbet2, dn2,
              cbet1, cbet2, 0, &m12b, &m0, 0, 0, Ca);
      x = -1 + m12b / (cbet1 * cbet2 * m0 * pi);
      betscale = x < -(real)(0.01) ? sbet12a / x :
        -g->f * sq(cbet1) * pi;
      lamscale = betscale / cbet1;
      y = lam12x / lamscale;
    }

    if (y > -tol1 && x > -1 - xthresh) {
      /* strip near cut */
      if (g->f >= 0) {
        salp1 = minx((real)(1), -(real)(x)); calp1 = - sqrt(1 - sq(salp1));
      } else {
        calp1 = maxx((real)(x > -tol1 ? 0 : -1), (real)(x));
        salp1 = sqrt(1 - sq(calp1));
      }
    } else {
      /* Estimate alp1, by solving the astroid problem.
       *
       * Could estimate alpha1 = theta + pi/2, directly, i.e.,
       *   calp1 = y/k; salp1 = -x/(1+k);  for f >= 0
       *   calp1 = x/(1+k); salp1 = -y/k;  for f < 0 (need to check)
       *
       * However, it's better to estimate omg12 from astroid and use
       * spherical formula to compute alp1.  This reduces the mean number of
       * Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
       * (min 0 max 5).  The changes in the number of iterations are as
       * follows:
       *
       * change percent
       *    1       5
       *    0      78
       *   -1      16
       *   -2       0.6
       *   -3       0.04
       *   -4       0.002
       *
       * The histogram of iterations is (m = number of iterations estimating
       * alp1 directly, n = number of iterations estimating via omg12, total
       * number of trials = 148605):
       *
       *  iter    m      n
       *    0   148    186
       *    1 13046  13845
       *    2 93315 102225
       *    3 36189  32341
       *    4  5396      7
       *    5   455      1
       *    6    56      0
       *
       * Because omg12 is near pi, estimate work with omg12a = pi - omg12 */
      real k = Astroid(x, y);
      real
        omg12a = lamscale * ( g->f >= 0 ? -x * k/(1 + k) : -y * (1 + k)/k );
      somg12 = sin(omg12a); comg12 = -cos(omg12a);
      /* Update spherical estimate of alp1 using omg12 instead of lam12 */
      salp1 = cbet2 * somg12;
      calp1 = sbet12a - cbet2 * sbet1 * sq(somg12) / (1 - comg12);
    }
  }
  /* Sanity check on starting guess.  Backwards check allows NaN through. */
  if (!(salp1 <= 0))
    norm2(&salp1, &calp1);
  else {
    salp1 = 1; calp1 = 0;
  }

  *psalp1 = salp1;
  *pcalp1 = calp1;
  if (shortline)
    *pdnm = dnm;
  if (sig12 >= 0) {
    *psalp2 = salp2;
    *pcalp2 = calp2;
  }
  return sig12;
}

real Lambda12(const struct geod_geodesic* g,
              real sbet1, real cbet1, real dn1,
              real sbet2, real cbet2, real dn2,
              real salp1, real calp1,
              real slam120, real clam120,
              real* psalp2, real* pcalp2,
              real* psig12,
              real* pssig1, real* pcsig1,
              real* pssig2, real* pcsig2,
              real* peps,
              real* psomg12, real* pcomg12,
              boolx diffp, real* pdlam12,
              /* Scratch area of the right size */
              real Ca[]) {
  real salp2 = 0, calp2 = 0, sig12 = 0,
    ssig1 = 0, csig1 = 0, ssig2 = 0, csig2 = 0, eps = 0,
    somg12 = 0, comg12 = 0, dlam12 = 0;
  real salp0, calp0;
  real somg1, comg1, somg2, comg2, lam12;
  real B312, eta, k2;

  if (sbet1 == 0 && calp1 == 0)
    /* Break degeneracy of equatorial line.  This case has already been
     * handled. */
    calp1 = -tiny;

  /* sin(alp1) * cos(bet1) = sin(alp0) */
  salp0 = salp1 * cbet1;
  calp0 = hypotx(calp1, salp1 * sbet1); /* calp0 > 0 */

  /* tan(bet1) = tan(sig1) * cos(alp1)
   * tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1) */
  ssig1 = sbet1; somg1 = salp0 * sbet1;
  csig1 = comg1 = calp1 * cbet1;
  norm2(&ssig1, &csig1);
  /* norm2(&somg1, &comg1); -- don't need to normalize! */

  /* Enforce symmetries in the case abs(bet2) = -bet1.  Need to be careful
   * about this case, since this can yield singularities in the Newton
   * iteration.
   * sin(alp2) * cos(bet2) = sin(alp0) */
  salp2 = cbet2 != cbet1 ? salp0 / cbet2 : salp1;
  /* calp2 = sqrt(1 - sq(salp2))
   *       = sqrt(sq(calp0) - sq(sbet2)) / cbet2
   * and subst for calp0 and rearrange to give (choose positive sqrt
   * to give alp2 in [0, pi/2]). */
  calp2 = cbet2 != cbet1 || fabs(sbet2) != -sbet1 ?
    sqrt(sq(calp1 * cbet1) +
         (cbet1 < -sbet1 ?
          (cbet2 - cbet1) * (cbet1 + cbet2) :
          (sbet1 - sbet2) * (sbet1 + sbet2))) / cbet2 :
    fabs(calp1);
  /* tan(bet2) = tan(sig2) * cos(alp2)
   * tan(omg2) = sin(alp0) * tan(sig2). */
  ssig2 = sbet2; somg2 = salp0 * sbet2;
  csig2 = comg2 = calp2 * cbet2;
  norm2(&ssig2, &csig2);
  /* norm2(&somg2, &comg2); -- don't need to normalize! */

  /* sig12 = sig2 - sig1, limit to [0, pi] */
  sig12 = atan2(maxx((real)(0), csig1 * ssig2 - ssig1 * csig2),
                csig1 * csig2 + ssig1 * ssig2);

  /* omg12 = omg2 - omg1, limit to [0, pi] */
  somg12 = maxx((real)(0), comg1 * somg2 - somg1 * comg2);
  comg12 =                 comg1 * comg2 + somg1 * somg2;
  /* eta = omg12 - lam120 */
  eta = atan2(somg12 * clam120 - comg12 * slam120,
              comg12 * clam120 + somg12 * slam120);
  k2 = sq(calp0) * g->ep2;
  eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2);
  C3f(g, eps, Ca);
  B312 = (SinCosSeries(TRUE, ssig2, csig2, Ca, nC3-1) -
          SinCosSeries(TRUE, ssig1, csig1, Ca, nC3-1));
  lam12 = eta - g->f * A3f(g, eps) * salp0 * (sig12 + B312);

  if (diffp) {
    if (calp2 == 0)
      dlam12 = - 2 * g->f1 * dn1 / sbet1;
    else {
      Lengths(g, eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
              cbet1, cbet2, 0, &dlam12, 0, 0, 0, Ca);
      dlam12 *= g->f1 / (calp2 * cbet2);
    }
  }

  *psalp2 = salp2;
  *pcalp2 = calp2;
  *psig12 = sig12;
  *pssig1 = ssig1;
  *pcsig1 = csig1;
  *pssig2 = ssig2;
  *pcsig2 = csig2;
  *peps = eps;
  *psomg12 = somg12;
  *pcomg12 = comg12;
  if (diffp)
    *pdlam12 = dlam12;

  return lam12;
}

real A3f(const struct geod_geodesic* g, real eps) {
  /* Evaluate A3 */
  return polyval(nA3 - 1, g->A3x, eps);
}

void C3f(const struct geod_geodesic* g, real eps, real c[]) {
  /* Evaluate C3 coeffs
   * Elements c[1] thru c[nC3 - 1] are set */
  real mult = 1;
  int o = 0, l;
  for (l = 1; l < nC3; ++l) {   /* l is index of C3[l] */
    int m = nC3 - l - 1;        /* order of polynomial in eps */
    mult *= eps;
    c[l] = mult * polyval(m, g->C3x + o, eps);
    o += m + 1;
  }
}

void C4f(const struct geod_geodesic* g, real eps, real c[]) {
  /* Evaluate C4 coeffs
   * Elements c[0] thru c[nC4 - 1] are set */
  real mult = 1;
  int o = 0, l;
  for (l = 0; l < nC4; ++l) {   /* l is index of C4[l] */
    int m = nC4 - l - 1;        /* order of polynomial in eps */
    c[l] = mult * polyval(m, g->C4x + o, eps);
    o += m + 1;
    mult *= eps;
  }
}

/* The scale factor A1-1 = mean value of (d/dsigma)I1 - 1 */
real A1m1f(real eps)  {
  static const real coeff[] = {
    /* (1-eps)*A1-1, polynomial in eps2 of order 3 */
    1, 4, 64, 0, 256,
  };
  int m = nA1/2;
  real t = polyval(m, coeff, sq(eps)) / coeff[m + 1];
  return (t + eps) / (1 - eps);
}

/* The coefficients C1[l] in the Fourier expansion of B1 */
void C1f(real eps, real c[])  {
  static const real coeff[] = {
    /* C1[1]/eps^1, polynomial in eps2 of order 2 */
    -1, 6, -16, 32,
    /* C1[2]/eps^2, polynomial in eps2 of order 2 */
    -9, 64, -128, 2048,
    /* C1[3]/eps^3, polynomial in eps2 of order 1 */
    9, -16, 768,
    /* C1[4]/eps^4, polynomial in eps2 of order 1 */
    3, -5, 512,
    /* C1[5]/eps^5, polynomial in eps2 of order 0 */
    -7, 1280,
    /* C1[6]/eps^6, polynomial in eps2 of order 0 */
    -7, 2048,
  };
  real
    eps2 = sq(eps),
    d = eps;
  int o = 0, l;
  for (l = 1; l <= nC1; ++l) {  /* l is index of C1p[l] */
    int m = (nC1 - l) / 2;      /* order of polynomial in eps^2 */
    c[l] = d * polyval(m, coeff + o, eps2) / coeff[o + m + 1];
    o += m + 2;
    d *= eps;
  }
}

/* The coefficients C1p[l] in the Fourier expansion of B1p */
void C1pf(real eps, real c[])  {
  static const real coeff[] = {
    /* C1p[1]/eps^1, polynomial in eps2 of order 2 */
    205, -432, 768, 1536,
    /* C1p[2]/eps^2, polynomial in eps2 of order 2 */
    4005, -4736, 3840, 12288,
    /* C1p[3]/eps^3, polynomial in eps2 of order 1 */
    -225, 116, 384,
    /* C1p[4]/eps^4, polynomial in eps2 of order 1 */
    -7173, 2695, 7680,
    /* C1p[5]/eps^5, polynomial in eps2 of order 0 */
    3467, 7680,
    /* C1p[6]/eps^6, polynomial in eps2 of order 0 */
    38081, 61440,
  };
  real
    eps2 = sq(eps),
    d = eps;
  int o = 0, l;
  for (l = 1; l <= nC1p; ++l) { /* l is index of C1p[l] */
    int m = (nC1p - l) / 2;     /* order of polynomial in eps^2 */
    c[l] = d * polyval(m, coeff + o, eps2) / coeff[o + m + 1];
    o += m + 2;
    d *= eps;
  }
}

/* The scale factor A2-1 = mean value of (d/dsigma)I2 - 1 */
real A2m1f(real eps)  {
  static const real coeff[] = {
    /* (eps+1)*A2-1, polynomial in eps2 of order 3 */
    -11, -28, -192, 0, 256,
  };
  int m = nA2/2;
  real t = polyval(m, coeff, sq(eps)) / coeff[m + 1];
  return (t - eps) / (1 + eps);
}

/* The coefficients C2[l] in the Fourier expansion of B2 */
void C2f(real eps, real c[])  {
  static const real coeff[] = {
    /* C2[1]/eps^1, polynomial in eps2 of order 2 */
    1, 2, 16, 32,
    /* C2[2]/eps^2, polynomial in eps2 of order 2 */
    35, 64, 384, 2048,
    /* C2[3]/eps^3, polynomial in eps2 of order 1 */
    15, 80, 768,
    /* C2[4]/eps^4, polynomial in eps2 of order 1 */
    7, 35, 512,
    /* C2[5]/eps^5, polynomial in eps2 of order 0 */
    63, 1280,
    /* C2[6]/eps^6, polynomial in eps2 of order 0 */
    77, 2048,
  };
  real
    eps2 = sq(eps),
    d = eps;
  int o = 0, l;
  for (l = 1; l <= nC2; ++l) { /* l is index of C2[l] */
    int m = (nC2 - l) / 2;     /* order of polynomial in eps^2 */
    c[l] = d * polyval(m, coeff + o, eps2) / coeff[o + m + 1];
    o += m + 2;
    d *= eps;
  }
}

/* The scale factor A3 = mean value of (d/dsigma)I3 */
void A3coeff(struct geod_geodesic* g) {
  static const real coeff[] = {
    /* A3, coeff of eps^5, polynomial in n of order 0 */
    -3, 128,
    /* A3, coeff of eps^4, polynomial in n of order 1 */
    -2, -3, 64,
    /* A3, coeff of eps^3, polynomial in n of order 2 */
    -1, -3, -1, 16,
    /* A3, coeff of eps^2, polynomial in n of order 2 */
    3, -1, -2, 8,
    /* A3, coeff of eps^1, polynomial in n of order 1 */
    1, -1, 2,
    /* A3, coeff of eps^0, polynomial in n of order 0 */
    1, 1,
  };
  int o = 0, k = 0, j;
  for (j = nA3 - 1; j >= 0; --j) {             /* coeff of eps^j */
    int m = nA3 - j - 1 < j ? nA3 - j - 1 : j; /* order of polynomial in n */
    g->A3x[k++] = polyval(m, coeff + o, g->n) / coeff[o + m + 1];
    o += m + 2;
  }
}

/* The coefficients C3[l] in the Fourier expansion of B3 */
void C3coeff(struct geod_geodesic* g) {
  static const real coeff[] = {
    /* C3[1], coeff of eps^5, polynomial in n of order 0 */
    3, 128,
    /* C3[1], coeff of eps^4, polynomial in n of order 1 */
    2, 5, 128,
    /* C3[1], coeff of eps^3, polynomial in n of order 2 */
    -1, 3, 3, 64,
    /* C3[1], coeff of eps^2, polynomial in n of order 2 */
    -1, 0, 1, 8,
    /* C3[1], coeff of eps^1, polynomial in n of order 1 */
    -1, 1, 4,
    /* C3[2], coeff of eps^5, polynomial in n of order 0 */
    5, 256,
    /* C3[2], coeff of eps^4, polynomial in n of order 1 */
    1, 3, 128,
    /* C3[2], coeff of eps^3, polynomial in n of order 2 */
    -3, -2, 3, 64,
    /* C3[2], coeff of eps^2, polynomial in n of order 2 */
    1, -3, 2, 32,
    /* C3[3], coeff of eps^5, polynomial in n of order 0 */
    7, 512,
    /* C3[3], coeff of eps^4, polynomial in n of order 1 */
    -10, 9, 384,
    /* C3[3], coeff of eps^3, polynomial in n of order 2 */
    5, -9, 5, 192,
    /* C3[4], coeff of eps^5, polynomial in n of order 0 */
    7, 512,
    /* C3[4], coeff of eps^4, polynomial in n of order 1 */
    -14, 7, 512,
    /* C3[5], coeff of eps^5, polynomial in n of order 0 */
    21, 2560,
  };
  int o = 0, k = 0, l, j;
  for (l = 1; l < nC3; ++l) {                    /* l is index of C3[l] */
    for (j = nC3 - 1; j >= l; --j) {             /* coeff of eps^j */
      int m = nC3 - j - 1 < j ? nC3 - j - 1 : j; /* order of polynomial in n */
      g->C3x[k++] = polyval(m, coeff + o, g->n) / coeff[o + m + 1];
      o += m + 2;
    }
  }
}

/* The coefficients C4[l] in the Fourier expansion of I4 */
void C4coeff(struct geod_geodesic* g) {
  static const real coeff[] = {
    /* C4[0], coeff of eps^5, polynomial in n of order 0 */
    97, 15015,
    /* C4[0], coeff of eps^4, polynomial in n of order 1 */
    1088, 156, 45045,
    /* C4[0], coeff of eps^3, polynomial in n of order 2 */
    -224, -4784, 1573, 45045,
    /* C4[0], coeff of eps^2, polynomial in n of order 3 */
    -10656, 14144, -4576, -858, 45045,
    /* C4[0], coeff of eps^1, polynomial in n of order 4 */
    64, 624, -4576, 6864, -3003, 15015,
    /* C4[0], coeff of eps^0, polynomial in n of order 5 */
    100, 208, 572, 3432, -12012, 30030, 45045,
    /* C4[1], coeff of eps^5, polynomial in n of order 0 */
    1, 9009,
    /* C4[1], coeff of eps^4, polynomial in n of order 1 */
    -2944, 468, 135135,
    /* C4[1], coeff of eps^3, polynomial in n of order 2 */
    5792, 1040, -1287, 135135,
    /* C4[1], coeff of eps^2, polynomial in n of order 3 */
    5952, -11648, 9152, -2574, 135135,
    /* C4[1], coeff of eps^1, polynomial in n of order 4 */
    -64, -624, 4576, -6864, 3003, 135135,
    /* C4[2], coeff of eps^5, polynomial in n of order 0 */
    8, 10725,
    /* C4[2], coeff of eps^4, polynomial in n of order 1 */
    1856, -936, 225225,
    /* C4[2], coeff of eps^3, polynomial in n of order 2 */
    -8448, 4992, -1144, 225225,
    /* C4[2], coeff of eps^2, polynomial in n of order 3 */
    -1440, 4160, -4576, 1716, 225225,
    /* C4[3], coeff of eps^5, polynomial in n of order 0 */
    -136, 63063,
    /* C4[3], coeff of eps^4, polynomial in n of order 1 */
    1024, -208, 105105,
    /* C4[3], coeff of eps^3, polynomial in n of order 2 */
    3584, -3328, 1144, 315315,
    /* C4[4], coeff of eps^5, polynomial in n of order 0 */
    -128, 135135,
    /* C4[4], coeff of eps^4, polynomial in n of order 1 */
    -2560, 832, 405405,
    /* C4[5], coeff of eps^5, polynomial in n of order 0 */
    128, 99099,
  };
  int o = 0, k = 0, l, j;
  for (l = 0; l < nC4; ++l) {        /* l is index of C4[l] */
    for (j = nC4 - 1; j >= l; --j) { /* coeff of eps^j */
      int m = nC4 - j - 1;           /* order of polynomial in n */
      g->C4x[k++] = polyval(m, coeff + o, g->n) / coeff[o + m + 1];
      o += m + 2;
    }
  }
}

int transit(real lon1, real lon2) {
  real lon12;
  /* Return 1 or -1 if crossing prime meridian in east or west direction.
   * Otherwise return zero. */
  /* Compute lon12 the same way as Geodesic::Inverse. */
  lon1 = AngNormalize(lon1);
  lon2 = AngNormalize(lon2);
  lon12 = AngDiff(lon1, lon2, 0);
  return lon1 < 0 && lon2 >= 0 && lon12 > 0 ? 1 :
    (lon2 < 0 && lon1 >= 0 && lon12 < 0 ? -1 : 0);
}

int transitdirect(real lon1, real lon2) {
  lon1 = fmod(lon1, (real)(720));
  lon2 = fmod(lon2, (real)(720));
  return ( ((lon2 >= 0 && lon2 < 360) || lon2 < -360 ? 0 : 1) -
           ((lon1 >= 0 && lon1 < 360) || lon1 < -360 ? 0 : 1) );
}

void accini(real s[]) {
  /* Initialize an accumulator; this is an array with two elements. */
  s[0] = s[1] = 0;
}

void acccopy(const real s[], real t[]) {
  /* Copy an accumulator; t = s. */
  t[0] = s[0]; t[1] = s[1];
}

void accadd(real s[], real y) {
  /* Add y to an accumulator. */
  real u, z = sumx(y, s[1], &u);
  s[0] = sumx(z, s[0], &s[1]);
  if (s[0] == 0)
    s[0] = u;
  else
    s[1] = s[1] + u;
}

real accsum(const real s[], real y) {
  /* Return accumulator + y (but don't add to accumulator). */
  real t[2];
  acccopy(s, t);
  accadd(t, y);
  return t[0];
}

void accneg(real s[]) {
  /* Negate an accumulator. */
  s[0] = -s[0]; s[1] = -s[1];
}

void geod_polygon_init(struct geod_polygon* p, boolx polylinep) {
  p->polyline = (polylinep != 0);
  geod_polygon_clear(p);
}

void geod_polygon_clear(struct geod_polygon* p) {
  p->lat0 = p->lon0 = p->lat = p->lon = NaN;
  accini(p->P);
  accini(p->A);
  p->num = p->crossings = 0;
}

void geod_polygon_addpoint(const struct geod_geodesic* g,
                           struct geod_polygon* p,
                           real lat, real lon) {
  lon = AngNormalize(lon);
  if (p->num == 0) {
    p->lat0 = p->lat = lat;
    p->lon0 = p->lon = lon;
  } else {
    real s12, S12;
    geod_geninverse(g, p->lat, p->lon, lat, lon,
                    &s12, 0, 0, 0, 0, 0, p->polyline ? 0 : &S12);
    accadd(p->P, s12);
    if (!p->polyline) {
      accadd(p->A, S12);
      p->crossings += transit(p->lon, lon);
    }
    p->lat = lat; p->lon = lon;
  }
  ++p->num;
}

void geod_polygon_addedge(const struct geod_geodesic* g,
                          struct geod_polygon* p,
                          real azi, real s) {
  if (p->num) {                 /* Do nothing is num is zero */
    real lat, lon, S12;
    geod_gendirect(g, p->lat, p->lon, azi, GEOD_LONG_UNROLL, s,
                   &lat, &lon, 0,
                   0, 0, 0, 0, p->polyline ? 0 : &S12);
    accadd(p->P, s);
    if (!p->polyline) {
      accadd(p->A, S12);
      p->crossings += transitdirect(p->lon, lon);
    }
    p->lat = lat; p->lon = lon;
    ++p->num;
  }
}

unsigned geod_polygon_compute(const struct geod_geodesic* g,
                              const struct geod_polygon* p,
                              boolx reverse, boolx sign,
                              real* pA, real* pP) {
  real s12, S12, t[2], area0;
  int crossings;
  if (p->num < 2) {
    if (pP) *pP = 0;
    if (!p->polyline && pA) *pA = 0;
    return p->num;
  }
  if (p->polyline) {
    if (pP) *pP = p->P[0];
    return p->num;
  }
  geod_geninverse(g, p->lat, p->lon, p->lat0, p->lon0,
                  &s12, 0, 0, 0, 0, 0, &S12);
  if (pP) *pP = accsum(p->P, s12);
  acccopy(p->A, t);
  accadd(t, S12);
  crossings = p->crossings + transit(p->lon, p->lon0);
  area0 = 4 * pi * g->c2;
  if (crossings & 1)
    accadd(t, (t[0] < 0 ? 1 : -1) * area0/2);
  /* area is with the clockwise sense.  If !reverse convert to
   * counter-clockwise convention. */
  if (!reverse)
    accneg(t);
  /* If sign put area in (-area0/2, area0/2], else put area in [0, area0) */
  if (sign) {
    if (t[0] > area0/2)
      accadd(t, -area0);
    else if (t[0] <= -area0/2)
      accadd(t, +area0);
  } else {
    if (t[0] >= area0)
      accadd(t, -area0);
    else if (t[0] < 0)
      accadd(t, +area0);
  }
  if (pA) *pA = 0 + t[0];
  return p->num;
}

unsigned geod_polygon_testpoint(const struct geod_geodesic* g,
                                const struct geod_polygon* p,
                                real lat, real lon,
                                boolx reverse, boolx sign,
                                real* pA, real* pP) {
  real perimeter, tempsum, area0;
  int crossings, i;
  unsigned num = p->num + 1;
  if (num == 1) {
    if (pP) *pP = 0;
    if (!p->polyline && pA) *pA = 0;
    return num;
  }
  perimeter = p->P[0];
  tempsum = p->polyline ? 0 : p->A[0];
  crossings = p->crossings;
  for (i = 0; i < (p->polyline ? 1 : 2); ++i) {
    real s12, S12;
    geod_geninverse(g,
                    i == 0 ? p->lat  : lat, i == 0 ? p->lon  : lon,
                    i != 0 ? p->lat0 : lat, i != 0 ? p->lon0 : lon,
                    &s12, 0, 0, 0, 0, 0, p->polyline ? 0 : &S12);
    perimeter += s12;
    if (!p->polyline) {
      tempsum += S12;
      crossings += transit(i == 0 ? p->lon  : lon,
                           i != 0 ? p->lon0 : lon);
    }
  }

  if (pP) *pP = perimeter;
  if (p->polyline)
    return num;

  area0 = 4 * pi * g->c2;
  if (crossings & 1)
    tempsum += (tempsum < 0 ? 1 : -1) * area0/2;
  /* area is with the clockwise sense.  If !reverse convert to
   * counter-clockwise convention. */
  if (!reverse)
    tempsum *= -1;
  /* If sign put area in (-area0/2, area0/2], else put area in [0, area0) */
  if (sign) {
    if (tempsum > area0/2)
      tempsum -= area0;
    else if (tempsum <= -area0/2)
      tempsum += area0;
  } else {
    if (tempsum >= area0)
      tempsum -= area0;
    else if (tempsum < 0)
      tempsum += area0;
  }
  if (pA) *pA = 0 + tempsum;
  return num;
}

unsigned geod_polygon_testedge(const struct geod_geodesic* g,
                               const struct geod_polygon* p,
                               real azi, real s,
                               boolx reverse, boolx sign,
                               real* pA, real* pP) {
  real perimeter, tempsum, area0;
  int crossings;
  unsigned num = p->num + 1;
  if (num == 1) {               /* we don't have a starting point! */
    if (pP) *pP = NaN;
    if (!p->polyline && pA) *pA = NaN;
    return 0;
  }
  perimeter = p->P[0] + s;
  if (p->polyline) {
    if (pP) *pP = perimeter;
    return num;
  }

  tempsum = p->A[0];
  crossings = p->crossings;
  {
    real lat, lon, s12, S12;
    geod_gendirect(g, p->lat, p->lon, azi, GEOD_LONG_UNROLL, s,
                   &lat, &lon, 0,
                   0, 0, 0, 0, &S12);
    tempsum += S12;
    crossings += transitdirect(p->lon, lon);
    geod_geninverse(g, lat,  lon, p->lat0,  p->lon0,
                    &s12, 0, 0, 0, 0, 0, &S12);
    perimeter += s12;
    tempsum += S12;
    crossings += transit(lon, p->lon0);
  }

  area0 = 4 * pi * g->c2;
  if (crossings & 1)
    tempsum += (tempsum < 0 ? 1 : -1) * area0/2;
  /* area is with the clockwise sense.  If !reverse convert to
   * counter-clockwise convention. */
  if (!reverse)
    tempsum *= -1;
  /* If sign put area in (-area0/2, area0/2], else put area in [0, area0) */
  if (sign) {
    if (tempsum > area0/2)
      tempsum -= area0;
    else if (tempsum <= -area0/2)
      tempsum += area0;
  } else {
    if (tempsum >= area0)
      tempsum -= area0;
    else if (tempsum < 0)
      tempsum += area0;
  }
  if (pP) *pP = perimeter;
  if (pA) *pA = 0 + tempsum;
  return num;
}

void geod_polygonarea(const struct geod_geodesic* g,
                      real lats[], real lons[], int n,
                      real* pA, real* pP) {
  int i;
  struct geod_polygon p;
  geod_polygon_init(&p, FALSE);
  for (i = 0; i < n; ++i)
    geod_polygon_addpoint(g, &p, lats[i], lons[i]);
  geod_polygon_compute(g, &p, FALSE, TRUE, pA, pP);
}

/** @endcond */