1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
#' Transformed cartesian coordinate system.
#'
#' \code{coord_trans} is different to scale transformations in that it occurs after
#' statistical transformation and will affect the visual appearance of geoms - there is
#' no guarantee that straight lines will continue to be straight.
#'
#' All current transformations only work with continuous values - see
#' \code{\link[scales]{trans_new}} for list of transformations, and instructions on
#' how to create your own.
#'
#' @param xtrans,ytrans transformers for x and y axes
#' @param limx,limy limits for x and y axes. (Named so for backward
#' compatability)
#' @export
#' @examples
#' \donttest{
#' # See ?geom_boxplot for other examples
#'
#' # Three ways of doing transformating in ggplot:
#' # * by transforming the data
#' qplot(log10(carat), log10(price), data=diamonds)
#' # * by transforming the scales
#' qplot(carat, price, data=diamonds, log="xy")
#' qplot(carat, price, data=diamonds) + scale_x_log10() + scale_y_log10()
#' # * by transforming the coordinate system:
#' qplot(carat, price, data=diamonds) + coord_trans(x = "log10", y = "log10")
#'
#' # The difference between transforming the scales and
#' # transforming the coordinate system is that scale
#' # transformation occurs BEFORE statistics, and coordinate
#' # transformation afterwards. Coordinate transformation also
#' # changes the shape of geoms:
#'
#' d <- subset(diamonds, carat > 0.5)
#' qplot(carat, price, data = d, log="xy") +
#' geom_smooth(method="lm")
#' qplot(carat, price, data = d) +
#' geom_smooth(method="lm") +
#' coord_trans(x = "log10", y = "log10")
#'
#' # Here I used a subset of diamonds so that the smoothed line didn't
#' # drop below zero, which obviously causes problems on the log-transformed
#' # scale
#'
#' # With a combination of scale and coordinate transformation, it's
#' # possible to do back-transformations:
#' library(scales)
#' qplot(carat, price, data=diamonds, log="xy") +
#' geom_smooth(method="lm") +
#' coord_trans(x = exp_trans(10), y = exp_trans(10))
#' # cf.
#' qplot(carat, price, data=diamonds) + geom_smooth(method = "lm")
#'
#' # Also works with discrete scales
#' df <- data.frame(a = abs(rnorm(26)),letters)
#' plot <- ggplot(df,aes(a,letters)) + geom_point()
#'
#' plot + coord_trans(x = "log10")
#' plot + coord_trans(x = "sqrt")
#' }
coord_trans <- function(xtrans = "identity", ytrans = "identity", limx = NULL, limy = NULL) {
# @kohske
# Now limits are implemented.
# But for backward compatibility, xlim -> limx, ylim -> ylim
# Because there are many examples such as
# > coord_trans(x = "log10", y = "log10")
# Maybe this is changed.
if (is.character(xtrans)) xtrans <- as.trans(xtrans)
if (is.character(ytrans)) ytrans <- as.trans(ytrans)
coord(trans = list(x = xtrans, y = ytrans), limits = list(x = limx, y = limy), subclass = "trans")
}
#' @export
coord_distance.trans <- function(coord, x, y, details) {
max_dist <- dist_euclidean(details$x.range, details$y.range)
dist_euclidean(coord$trans$x$transform(x), coord$trans$y$transform(y)) / max_dist
}
#' @export
coord_transform.trans <- function(coord, data, details) {
trans_x <- function(data) transform_value(coord$trans$x, data, details$x.range)
trans_y <- function(data) transform_value(coord$trans$y, data, details$y.range)
data <- transform_position(data, trans_x, trans_y)
transform_position(data, squish_infinite, squish_infinite)
}
transform_value <- function(trans, value, range) {
rescale(trans$transform(value), 0:1, range)
}
#' @export
coord_train.trans <- function(coord, scales) {
c(train_trans(scales$x, coord$limits$x, coord$trans$x, "x"),
train_trans(scales$y, coord$limits$y, coord$trans$y, "y"))
}
train_trans <- function(scale, limits, trans, name) {
# first, calculate the range that is the numerical limits in data space
# expand defined by scale OR coord
# @kohske
# Expansion of data range sometimes go beyond domain,
# so in trasn, expansion takes place at the fnial stage.
if (is.null(limits)) {
range <- scale_dimension(scale, c(0, 0))
} else {
range <- range(scale_transform(scale, limits))
}
# breaks on data space
out <- scale_break_info(scale, range)
# trans'd range
out$range <- trans$transform(out$range)
# expansion if limits are not specified
if (is.null(limits)) {
expand <- coord_expand_defaults(coord, scale)
out$range <- expand_range(out$range, expand[1], expand[2])
}
# major and minor values in plot space
out$major_source <- transform_value(trans, out$major_source, out$range)
out$minor_source <- transform_value(trans, out$minor_source, out$range)
out <- list(range = out$range, labels = out$labels,
major = out$major_source, minor = out$minor_source)
names(out) <- paste(name, names(out), sep = ".")
out
}
|