File: geom-point-.r

package info (click to toggle)
r-cran-ggplot2 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,412 kB
  • sloc: sh: 9; makefile: 1
file content (143 lines) | stat: -rw-r--r-- 5,854 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#' Points, as for a scatterplot
#'
#' The point geom is used to create scatterplots.
#'
#' The scatterplot is useful for displaying the relationship between two
#' continuous variables, although it can also be used with one continuous
#' and one categorical variable, or two categorical variables.  See
#' \code{\link{geom_jitter}} for possibilities.
#'
#' The \emph{bubblechart} is a scatterplot with a third variable mapped to
#' the size of points.  There are no special names for scatterplots where
#' another variable is mapped to point shape or colour, however.
#'
#' The biggest potential problem with a scatterplot is overplotting: whenever
#' you have more than a few points, points may be plotted on top of one
#' another. This can severely distort the visual appearance of the plot.
#' There is no one solution to this problem, but there are some techniques
#' that can help.  You can add additional information with
#' \code{\link{stat_smooth}}, \code{\link{stat_quantile}} or
#' \code{\link{stat_density2d}}.  If you have few unique x values,
#' \code{\link{geom_boxplot}} may also be useful.  Alternatively, you can
#' summarise the number of points at each location and display that in some
#' way, using \code{\link{stat_sum}}. Another technique is to use transparent
#' points, \code{geom_point(alpha = 0.05)}.
#'
#' @section Aesthetics:
#' \Sexpr[results=rd,stage=build]{ggplot2:::rd_aesthetics("geom", "point")}
#'
#' @seealso \code{\link{scale_size}} to see scale area of points, instead of
#'   radius, \code{\link{geom_jitter}} to jitter points to reduce (mild)
#'   overplotting
#' @param mapping The aesthetic mapping, usually constructed with
#'    \code{\link{aes}} or \code{\link{aes_string}}. Only needs to be set
#'    at the layer level if you are overriding the plot defaults.
#' @param data A layer specific dataset - only needed if you want to override
#'    the plot defaults.
#' @param stat The statistical transformation to use on the data for this
#'    layer.
#' @param position The position adjustment to use for overlapping points
#'    on this layer
#' @param na.rm If \code{FALSE} (the default), removes missing values with
#'    a warning.  If \code{TRUE} silently removes missing values.
#' @param ... other arguments passed on to \code{\link{layer}}. This can
#'   include aesthetics whose values you want to set, not map. See
#'   \code{\link{layer}} for more details.
#' @export
#' @examples
#' \donttest{
#' p <- ggplot(mtcars, aes(wt, mpg))
#' p + geom_point()
#'
#' # Add aesthetic mappings
#' p + geom_point(aes(colour = qsec))
#' p + geom_point(aes(alpha = qsec))
#' p + geom_point(aes(colour = factor(cyl)))
#' p + geom_point(aes(shape = factor(cyl)))
#' p + geom_point(aes(size = qsec))
#'
#' # Change scales
#' p + geom_point(aes(colour = cyl)) + scale_colour_gradient(low = "blue")
#' p + geom_point(aes(size = qsec)) + scale_size_area()
#' p + geom_point(aes(shape = factor(cyl))) + scale_shape(solid = FALSE)
#'
#' # Set aesthetics to fixed value
#' p + geom_point(colour = "red", size = 3)
#' qplot(wt, mpg, data = mtcars, colour = I("red"), size = I(3))
#'
#' # Varying alpha is useful for large datasets
#' d <- ggplot(diamonds, aes(carat, price))
#' d + geom_point(alpha = 1/10)
#' d + geom_point(alpha = 1/20)
#' d + geom_point(alpha = 1/100)
#'
#' # You can create interesting shapes by layering multiple points of
#' # different sizes
#' p <- ggplot(mtcars, aes(mpg, wt))
#' p + geom_point(colour="grey50", size = 4) + geom_point(aes(colour = cyl))
#' p + aes(shape = factor(cyl)) +
#'   geom_point(aes(colour = factor(cyl)), size = 4) +
#'   geom_point(colour="grey90", size = 1.5)
#' p + geom_point(colour="black", size = 4.5) +
#'   geom_point(colour="pink", size = 4) +
#'   geom_point(aes(shape = factor(cyl)))
#'
#' # These extra layers don't usually appear in the legend, but we can
#' # force their inclusion
#' p + geom_point(colour="black", size = 4.5, show_guide = TRUE) +
#'   geom_point(colour="pink", size = 4, show_guide = TRUE) +
#'   geom_point(aes(shape = factor(cyl)))
#'
#' # Transparent points:
#' qplot(mpg, wt, data = mtcars, size = I(5), alpha = I(0.2))
#'
#' # geom_point warns when missing values have been dropped from the data set
#' # and not plotted, you can turn this off by setting na.rm = TRUE
#' mtcars2 <- transform(mtcars, mpg = ifelse(runif(32) < 0.2, NA, mpg))
#' qplot(wt, mpg, data = mtcars2)
#' qplot(wt, mpg, data = mtcars2, na.rm = TRUE)
#'
#' # Use qplot instead
#' qplot(wt, mpg, data = mtcars)
#' qplot(wt, mpg, data = mtcars, colour = factor(cyl))
#' qplot(wt, mpg, data = mtcars, colour = I("red"))
#' }
geom_point <- function (mapping = NULL, data = NULL, stat = "identity", position = "identity",
na.rm = FALSE, ...) {
  GeomPoint$new(mapping = mapping, data = data, stat = stat, position = position,
  na.rm = na.rm, ...)
}

GeomPoint <- proto(Geom, {
  objname <- "point"

  draw_groups <- function(., ...) .$draw(...)
  draw <- function(., data, scales, coordinates, na.rm = FALSE, ...) {
    data <- remove_missing(data, na.rm,
      c("x", "y", "size", "shape"), name = "geom_point")
    if (empty(data)) return(zeroGrob())

    with(coord_transform(coordinates, data, scales),
      ggname(.$my_name(), pointsGrob(x, y, size=unit(size, "mm"), pch=shape,
      gp=gpar(col=alpha(colour, alpha), fill = alpha(fill, alpha), fontsize = size * .pt)))
    )
  }

  draw_legend <- function(., data, ...) {
    data <- aesdefaults(data, .$default_aes(), list(...))

    with(data,
      pointsGrob(0.5, 0.5, size=unit(size, "mm"), pch=shape,
      gp=gpar(
        col=alpha(colour, alpha),
        fill=alpha(fill, alpha),
        fontsize = size * .pt)
      )
    )
  }

  default_stat <- function(.) StatIdentity
  required_aes <- c("x", "y")
  default_aes <- function(.) aes(shape=16, colour="black", size=2, fill = NA, alpha = NA)

})