1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
#' ggplot2.
#'
#' @name ggplot2
#' @docType package
#' @import plyr digest scales grid reshape2 proto gtable
NULL
#' Prices of 50,000 round cut diamonds
#'
#' A dataset containing the prices and other attributes of almost 54,000
#' diamonds. The variables are as follows:
#'
#' \itemize{
#' \item price. price in US dollars (\$326--\$18,823)
#' \item carat. weight of the diamond (0.2--5.01)
#' \item cut. quality of the cut (Fair, Good, Very Good, Premium, Ideal)
#' \item colour. diamond colour, from J (worst) to D (best)
#' \item clarity. a measurement of how clear the diamond is (I1 (worst), SI1, SI2, VS1, VS2, VVS1, VVS2, IF (best))
#' \item x. length in mm (0--10.74)
#' \item y. width in mm (0--58.9)
#' \item z. depth in mm (0--31.8)
#' \item depth. total depth percentage = z / mean(x, y) = 2 * z / (x + y) (43--79)
#' \item table. width of top of diamond relative to widest point (43--95)
#' }
#'
#' @docType data
#' @keywords datasets
#' @name diamonds
#' @usage data(diamonds)
#' @format A data frame with 53940 rows and 10 variables
NULL
#' US economic time series.
#'
#' This dataset was produced from US economic time series data available from \url{http://research.stlouisfed.org/fred2}.
#'
#' \itemize{
#' \item date. Month of data collection
#'
#' \item psavert, personal savings rate, \url{http://research.stlouisfed.org/fred2/series/PSAVERT/}
#' \item pce, personal consumption expenditures, in billions of dollars, \url{http://research.stlouisfed.org/fred2/series/PCE}
#' \item unemploy, number of unemployed in thousands, \url{http://research.stlouisfed.org/fred2/series/UNEMPLOY}
#' \item uempmed, median duration of unemployment, in week, \url{http://research.stlouisfed.org/fred2/series/UEMPMED}
#' \item pop, total population, in thousands, \url{http://research.stlouisfed.org/fred2/series/POP}
#'
#' }
#'
#' @docType data
#' @keywords datasets
#' @name economics
#' @usage data(economics)
#' @format A data frame with 478 rows and 6 variables
NULL
#' Midwest demographics.
#'
#' Demographic information of midwest counties
#'
#' The variables are as follows:
#'
#' \itemize{
#' \item PID
#' \item county
#' \item state
#' \item area
#' \item poptotal. Total population
#' \item popdensity. Population density
#' \item popwhite. Number of whites.
#' \item popblack. Number of blacks.
#' \item popamerindian. Number of American Indians.
#' \item popasian. Number of Asians.
#' \item popother. Number of other races.
#' \item percwhite. Percent white.
#' \item percblack. Percent black.
#' \item percamerindan. Percent American Indian.
#' \item percasian. Percent Asian.
#' \item percother. Percent other races.
#' \item popadults. Number of adults.
#' \item perchsd.
#' \item percollege. Percent college educated.
#' \item percprof. Percent profession.
#' \item poppovertyknown.
#' \item percpovertyknown
#' \item percbelowpoverty
#' \item percchildbelowpovert
#' \item percadultpoverty
#' \item percelderlypoverty
#' \item inmetro. In a metro area.
#' \item category'
#' }
#'
#' @docType data
#' @keywords datasets
#' @name midwest
#' @usage data(midwest)
#' @format A data frame with 437 rows and 28 variables
NULL
#' Movie information and user ratings from IMDB.com.
#'
#' The internet movie database, \url{http://imdb.com/}, is a website devoted
#' to collecting movie data supplied by studios and fans. It claims to be the
#' biggest movie database on the web and is run by amazon. More about
#' information imdb.com can be found online,
#' \url{http://imdb.com/help/show_leaf?about}, including information about
#' the data collection process,
#' \url{http://imdb.com/help/show_leaf?infosource}.
#'
#' Movies were selected for inclusion if they had a known length and had been rated by at least one imdb user. The data set contains the following fields:
#'
#' \itemize{
#' \item title. Title of the movie.
#' \item year. Year of release.
#' \item budget. Total budget (if known) in US dollars
#' \item length. Length in minutes.
#' \item rating. Average IMDB user rating.
#' \item votes. Number of IMDB users who rated this movie.
#' \item r1-10. Multiplying by ten gives percentile (to nearest 10\%) of users who rated this movie a 1.
#' \item mpaa. MPAA rating.
#' \item action, animation, comedy, drama, documentary, romance, short. Binary variables representing if movie was classified as belonging to that genre.
#' }
#'
#' @docType data
#' @keywords datasets
#' @usage data(movies)
#' @name movies
#' @format A data frame with 28819 rows and 24 variables
#' @references \url{http://had.co.nz/data/movies/}
NULL
#' Fuel economy data from 1999 and 2008 for 38 popular models of car
#'
#' This dataset contains a subset of the fuel economy data that the EPA makes
#' available on \url{http://fueleconomy.gov}. It contains only models which
#' had a new release every year between 1999 and 2008 - this was used as a
#' proxy for the popularity of the car.
#'
#' \itemize{
#' \item manufacturer.
#' \item model.
#' \item displ. engine displacement, in litres
#' \item year.
#' \item cyl. number of cylinders
#' \item trans. type of transmission
#' \item drv. f = front-wheel drive, r = rear wheel drive, 4 = 4wd
#' \item cty. city miles per gallon
#' \item hwy. highway miles per gallon
#' \item fl.
#' \item class.
#' }
#'
#' @docType data
#' @keywords datasets
#' @name mpg
#' @usage data(mpg)
#' @format A data frame with 234 rows and 11 variables
NULL
#' An updated and expanded version of the mammals sleep dataset.
#'
#' This is an updated and expanded version of the mammals sleep dataset.
#' Updated sleep times and weights were taken from V. M. Savage and G. B.
#' West. A quantitative, theoretical framework for understanding mammalian
#' sleep. Proceedings of the National Academy of Sciences, 104 (3):1051-1056,
#' 2007.
#'
#' Additional variables order, conservation status and vore were added from
#' wikipedia.
#'
#' \itemize{
#' \item name. common name
#' \item genus.
#' \item vore. carnivore, omnivore or herbivore?
#' \item order.
#' \item conservation. the conservation status of the animal
#' \item sleep\_total. total amount of sleep, in hours
#' \item sleep\_rem. rem sleep, in hours
#' \item sleep\_cycle. length of sleep cycle, in hours
#' \item awake. amount of time spent awake, in hours
#' \item brainwt. brain weight in kilograms
#' \item bodywt. body weight in kilograms
#' }
#'
#' @docType data
#' @keywords datasets
#' @name msleep
#' @usage data(msleep)
#' @format A data frame with 83 rows and 11 variables
NULL
#' Terms of 10 presidents from Eisenhower to Bush W.
#'
#' The names of each president, the start and end date of their term, and
#' their party of 10 US presidents from Eisenhower to Bush W.
#'
#' @docType data
#' @keywords datasets
#' @name presidential
#' @usage data(presidential)
#' @format A data frame with 10 rows and 4 variables
NULL
#' Vector field of seal movements.
#'
#' This vector field was produced from the data described in Brillinger, D.R.,
#' Preisler, H.K., Ager, A.A. and Kie, J.G. "An exploratory data analysis
#' (EDA) of the paths of moving animals". J. Statistical Planning and
#' Inference 122 (2004), 43-63, using the methods of Brillinger, D.R.,
#' "Learning a potential function from a trajectory", Signal Processing
#' Letters. December (2007).
#'
#' @name seals
#' @usage data(seals)
#' @docType data
#' @keywords datasets
#' @format A data frame with 1155 rows and 4 variables
#' @references \url{http://www.stat.berkeley.edu/~brill/Papers/jspifinal.pdf}
NULL
|