1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
# Scales object encapsultes multiple scales.
# All input and output done with data.frames to facilitate
# multiple input and output variables
#' @importFrom methods setRefClass
Scales <- setRefClass("Scales", fields = "scales", methods = list(
find = function(aesthetic) {
vapply(scales, function(x) any(aesthetic %in% x$aesthetics), logical(1))
},
has_scale = function(aesthetic) {
any(find(aesthetic))
},
add = function(scale) {
prev_aes <- find(scale$aesthetics)
if (any(prev_aes)) {
# Get only the first aesthetic name in the returned vector -- it can
# sometimes be c("x", "xmin", "xmax", ....)
scalename <- scales[prev_aes][[1]]$aesthetics[1]
message("Scale for '", scalename,
"' is already present. Adding another scale for '", scalename,
"', which will replace the existing scale.")
}
# Remove old scale for this aesthetic (if it exists)
scales <<- c(scales[!prev_aes], list(scale))
},
clone = function() {
new_scales <- lapply(scales, scale_clone)
Scales$new(new_scales)
},
n = function() {
length(scales)
},
input = function() {
unlist(lapply(scales, "[[", "aesthetics"))
},
initialize = function(scales = NULL) {
initFields(scales = scales)
},
non_position_scales = function(.) {
Scales$new(scales[!find("x") & !find("y")])
},
get_scales = function(output) {
scale <- scales[find(output)]
if (length(scale) == 0) return()
scale[[1]]
}
))
# Train scale from a data frame
scales_train_df <- function(scales, df, drop = FALSE) {
if (empty(df) || length(scales$scales) == 0) return()
lapply(scales$scales, scale_train_df, df = df)
}
# Map values from a data.frame. Returns data.frame
scales_map_df <- function(scales, df) {
if (empty(df) || length(scales$scales) == 0) return(df)
mapped <- unlist(lapply(scales$scales, scale_map_df, df = df), recursive = FALSE)
quickdf(c(mapped, df[setdiff(names(df), names(mapped))]))
}
# Transform values to cardinal representation
scales_transform_df <- function(scales, df) {
if (empty(df) || length(scales$scales) == 0) return(df)
transformed <- unlist(lapply(scales$scales, scale_transform_df, df = df),
recursive = FALSE)
quickdf(c(transformed, df[setdiff(names(df), names(transformed))]))
}
# @param aesthetics A list of aesthetic-variable mappings. The name of each
# item is the aesthetic, and the value of each item is the variable in data.
scales_add_defaults <- function(scales, data, aesthetics, env) {
if (is.null(aesthetics)) return()
names(aesthetics) <- unlist(lapply(names(aesthetics), aes_to_scale))
new_aesthetics <- setdiff(names(aesthetics), scales$input())
# No new aesthetics, so no new scales to add
if (is.null(new_aesthetics)) return()
datacols <- tryapply(
aesthetics[new_aesthetics], eval,
envir = data, enclos = env
)
for(aes in names(datacols)) {
type <- scale_type(datacols[[aes]])
scale_name <- paste("scale", aes, type, sep="_")
# Skip aesthetics with no scales (e.g. group, order, etc)
scale_f <- find_global(scale_name, env, mode = "function")
if (is.null(scale_f)) next
scales$add(scale_f())
}
}
# Add missing but required scales.
# @param aesthetics A character vector of aesthetics. Typically c("x", "y").
scales_add_missing <- function(plot, aesthetics, env) {
# Keep only aesthetics that aren't already in plot$scales
aesthetics <- setdiff(aesthetics, plot$scales$input())
for (aes in aesthetics) {
scale_name <- paste("scale", aes, "continuous", sep="_")
scale_f <- find_global(scale_name, env, mode = "function")
plot$scales$add(scale_f())
}
}
# Look for object first in parent environment and if not found, then in
# ggplot2 namespace environment. This makes it possible to override default
# scales by setting them in the parent environment.
find_global <- function(name, env, mode = "any") {
if (exists(name, envir = env, mode = mode)) {
return(get(name, envir = env, mode = mode))
}
nsenv <- asNamespace("ggplot2")
if (exists(name, envir = nsenv, mode = mode)) {
return(get(name, envir = nsenv, mode = mode))
}
NULL
}
# Determine default type of a scale
scale_type <- function(x) UseMethod("scale_type")
#' @export
scale_type.default <- function(x) {
message("Don't know how to automatically pick scale for object of type ",
paste(class(x), collapse = "/"), ". Defaulting to continuous")
"continuous"
}
#' @export
scale_type.logical <- function(x) "discrete"
#' @export
scale_type.character <- function(x) "discrete"
#' @export
scale_type.factor <- function(x) "discrete"
#' @export
scale_type.POSIXt <- function(x) "datetime"
#' @export
scale_type.Date <- function(x) "date"
#' @export
scale_type.numeric <- function(x) "continuous"
|