1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
#' Add a smoother.
#'
#' Aids the eye in seeing patterns in the presence of overplotting.
#'
#' Calculation is performed by the (currently undocumented)
#' \code{predictdf} generic function and its methods. For most methods
#' the confidence bounds are computed using the \code{\link{predict}}
#' method - the exceptions are \code{loess} which uses a t-based
#' approximation, and for \code{glm} where the normal confidence interval
#' is constructed on the link scale, and then back-transformed to the response
#' scale.
#'
#' @section Aesthetics:
#' \Sexpr[results=rd,stage=build]{ggplot2:::rd_aesthetics("stat", "smooth")}
#'
#' @param method smoothing method (function) to use, eg. lm, glm, gam, loess,
#' rlm. For datasets with n < 1000 default is \code{\link{loess}}. For datasets
#' with 1000 or more observations defaults to gam, see \code{\link[mgcv]{gam}}
#' for more details.
#' @param formula formula to use in smoothing function, eg. \code{y ~ x},
#' \code{y ~ poly(x, 2)}, \code{y ~ log(x)}
#' @param se display confidence interval around smooth? (TRUE by default, see
#' level to control
#' @param fullrange should the fit span the full range of the plot, or just
#' the data
#' @param level level of confidence interval to use (0.95 by default)
#' @param n number of points to evaluate smoother at
#' @param na.rm If \code{FALSE} (the default), removes missing values with
#' a warning. If \code{TRUE} silently removes missing values.
#' @param ... other arguments are passed to smoothing function
#' @inheritParams stat_identity
#' @return a data.frame with additional columns
#' \item{y}{predicted value}
#' \item{ymin}{lower pointwise confidence interval around the mean}
#' \item{ymax}{upper pointwise confidence interval around the mean}
#' \item{se}{standard error}
#' @seealso
#' \code{\link{lm}} for linear smooths,
#' \code{\link{glm}} for generalised linear smooths,
#' \code{\link{loess}} for local smooths
#' @export
#' @examples
#' \donttest{
#' c <- ggplot(mtcars, aes(qsec, wt))
#' c + stat_smooth()
#' c + stat_smooth() + geom_point()
#'
#' # Adjust parameters
#' c + stat_smooth(se = FALSE) + geom_point()
#'
#' c + stat_smooth(span = 0.9) + geom_point()
#' c + stat_smooth(level = 0.99) + geom_point()
#' c + stat_smooth(method = "lm") + geom_point()
#'
#' library(splines)
#' library(MASS)
#' c + stat_smooth(method = "lm", formula = y ~ ns(x,3)) +
#' geom_point()
#' c + stat_smooth(method = rlm, formula= y ~ ns(x,3)) + geom_point()
#'
#' # The default confidence band uses a transparent colour.
#' # This currently only works on a limited number of graphics devices
#' # (including Quartz, PDF, and Cairo) so you may need to set the
#' # fill colour to a opaque colour, as shown below
#' c + stat_smooth(fill = "grey50", size = 2, alpha = 1)
#' c + stat_smooth(fill = "blue", size = 2, alpha = 1)
#'
#' # The colour of the line can be controlled with the colour aesthetic
#' c + stat_smooth(fill="blue", colour="darkblue", size=2)
#' c + stat_smooth(fill="blue", colour="darkblue", size=2, alpha = 0.2)
#' c + geom_point() +
#' stat_smooth(fill="blue", colour="darkblue", size=2, alpha = 0.2)
#'
#' # Smoothers for subsets
#' c <- ggplot(mtcars, aes(y=wt, x=mpg)) + facet_grid(. ~ cyl)
#' c + stat_smooth(method=lm) + geom_point()
#' c + stat_smooth(method=lm, fullrange = TRUE) + geom_point()
#'
#' # Geoms and stats are automatically split by aesthetics that are factors
#' c <- ggplot(mtcars, aes(y=wt, x=mpg, colour=factor(cyl)))
#' c + stat_smooth(method=lm) + geom_point()
#' c + stat_smooth(method=lm, aes(fill = factor(cyl))) + geom_point()
#' c + stat_smooth(method=lm, fullrange=TRUE, alpha = 0.1) + geom_point()
#'
#' # Use qplot instead
#' qplot(qsec, wt, data=mtcars, geom=c("smooth", "point"))
#'
#' # Example with logistic regression
#' data("kyphosis", package="rpart")
#' qplot(Age, Kyphosis, data=kyphosis)
#' qplot(Age, data=kyphosis, facets = . ~ Kyphosis, binwidth = 10)
#' qplot(Age, Kyphosis, data=kyphosis, position="jitter")
#' qplot(Age, Kyphosis, data=kyphosis, position=position_jitter(height=0.1))
#'
#' qplot(Age, as.numeric(Kyphosis) - 1, data = kyphosis) +
#' stat_smooth(method="glm", family="binomial")
#' qplot(Age, as.numeric(Kyphosis) - 1, data=kyphosis) +
#' stat_smooth(method="glm", family="binomial", formula = y ~ ns(x, 2))
#' }
stat_smooth <- function (mapping = NULL, data = NULL, geom = "smooth", position = "identity",
method = "auto", formula = y ~ x, se = TRUE, n = 80, fullrange = FALSE,
level = 0.95, na.rm = FALSE, ...) {
StatSmooth$new(mapping = mapping, data = data, geom = geom, position = position,
method = method, formula = formula, se = se, n = n, fullrange = fullrange,
level = level, na.rm = na.rm, ...)
}
StatSmooth <- proto(Stat, {
objname <- "smooth"
calculate_groups <- function(., data, scales, method="auto", formula=y~x, ...) {
rows <- daply(data, .(group), function(df) length(unique(df$x)))
if (all(rows == 1) && length(rows) > 1) {
message("geom_smooth: Only one unique x value each group.",
"Maybe you want aes(group = 1)?")
return(data.frame())
}
# Figure out what type of smoothing to do: loess for small datasets,
# gam with a cubic regression basis for large data
# This is based on the size of the _largest_ group.
if (identical(method, "auto")) {
groups <- count(data, "group")
if (max(groups$freq) < 1000) {
method <- "loess"
message('geom_smooth: method="auto" and size of largest group is <1000,',
' so using loess.',
' Use \'method = x\' to change the smoothing method.')
} else {
method <- "gam"
formula <- y ~ s(x, bs = "cs")
message('geom_smooth: method="auto" and size of largest group is >=1000,',
' so using gam with formula: y ~ s(x, bs = "cs").',
' Use \'method = x\' to change the smoothing method.')
}
}
if (identical(method, "gam")) try_require("mgcv")
.super$calculate_groups(., data, scales, method = method, formula = formula, ...)
}
calculate <- function(., data, scales, method="auto", formula=y~x, se = TRUE, n=80, fullrange=FALSE, xseq = NULL, level=0.95, na.rm = FALSE, ...) {
data <- remove_missing(data, na.rm, c("x", "y"), name="stat_smooth")
if (length(unique(data$x)) < 2) {
# Not enough data to perform fit
return(data.frame())
}
if (is.null(data$weight)) data$weight <- 1
if (is.null(xseq)) {
if (is.integer(data$x)) {
if (fullrange) {
xseq <- scale_dimension(scales$x, c(0, 0))
} else {
xseq <- sort(unique(data$x))
}
} else {
if (fullrange) {
range <- scale_dimension(scales$x, c(0, 0))
} else {
range <- range(data$x, na.rm=TRUE)
}
xseq <- seq(range[1], range[2], length=n)
}
}
if (is.character(method)) method <- match.fun(method)
method.special <- function(...)
method(formula, data=data, weights=weight, ...)
model <- safe.call(method.special, list(...), names(formals(method)))
predictdf(model, xseq, se, level)
}
required_aes <- c("x", "y")
default_geom <- function(.) GeomSmooth
})
|