1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
context("Scales")
test_that("buidling a plot does not affect its scales", {
dat <- data.frame(x = rnorm(20), y = rnorm(20))
p <- ggplot(dat, aes(x, y)) + geom_point()
expect_equal(length(p$scales$scales), 0)
ggplot_build(p)
expect_equal(length(p$scales$scales), 0)
})
test_that("ranges update only for variables listed in aesthetics", {
sc <- scale_alpha()
scale_train_df(sc, data.frame(alpha = 1:10))
expect_equal(sc$range$range, c(1, 10))
scale_train_df(sc, data.frame(alpha = 50))
expect_equal(sc$range$range, c(1, 50))
scale_train_df(sc, data.frame(beta = 100))
expect_equal(sc$range$range, c(1, 50))
scale_train_df(sc, data.frame())
expect_equal(sc$range$range, c(1, 50))
})
test_that("mapping works", {
sc <- scale_alpha(range = c(0, 1), na.value = 0)
scale_train_df(sc, data.frame(alpha = 1:10))
expect_equal(
scale_map_df(sc, data.frame(alpha = 1:10))[[1]],
round_any(seq(0, 1, length = 10), 1 / 500))
expect_equal(scale_map_df(sc, data.frame(alpha = NA))[[1]], 0)
expect_equal(
scale_map_df(sc, data.frame(alpha = c(-10, 11)))[[1]],
c(0, 0))
})
test_that("identity scale preserves input values", {
df <- data.frame(x = 1:3, z = letters[1:3])
p1 <- ggplot(df,
aes(x, z, colour = z, fill = z, shape = z, size = x, alpha = x)) +
geom_point() +
scale_colour_identity() +
scale_fill_identity() +
scale_shape_identity() +
scale_size_identity() +
scale_alpha_identity()
d1 <- pdata(p1)[[1]]
expect_that(d1$colour, equals(as.character(df$z)))
expect_that(d1$fill, equals(as.character(df$z)))
expect_that(d1$shape, equals(as.character(df$z)))
expect_that(d1$size, equals(as.numeric(df$z)))
expect_that(d1$alpha, equals(as.numeric(df$z)))
})
test_that("position scales updated by all position aesthetics", {
df <- data.frame(x = 1:3, y = 1:3)
aesthetics <- list(
aes(xend = x, yend = x),
aes(xmin = x, ymin = x),
aes(xmax = x, ymax = x),
aes(xintercept = x, yintercept = y)
)
base <- ggplot(df, aes(x = 1, y = 1)) + geom_point()
plots <- lapply(aesthetics, function(x) base %+% x)
ranges <- lapply(plots, pranges)
lapply(ranges, function(range) {
expect_that(range$x[[1]], equals(c(1, 3)))
expect_that(range$y[[1]], equals(c(1, 3)))
})
})
test_that("position scales generate after stats", {
df <- data.frame(x = factor(c(1, 1, 1)))
plot <- ggplot(df, aes(x)) + geom_bar()
ranges <- pranges(plot)
expect_that(ranges$x[[1]], equals(c("1")))
expect_that(ranges$y[[1]], equals(c(0, 3)))
})
test_that("oob affects position values", {
dat <- data.frame(x=c("a", "b", "c"), y=c(1, 5, 10))
base <- ggplot(dat, aes(x=x, y=y)) +
geom_bar(stat="identity") +
annotate("point", x = "a", y = c(-Inf, Inf))
y_scale <- function(limits, oob = censor) {
scale_y_continuous(limits = limits, oob = oob, expand = c(0, 0))
}
base + scale_y_continuous(limits=c(-0,5))
expect_warning(low_censor <- cdata(base + y_scale(c(0, 5), censor)),
"Removed 1 rows containing missing values")
expect_warning(mid_censor <- cdata(base + y_scale(c(3, 7), censor)),
"Removed 2 rows containing missing values")
low_squish <- cdata(base + y_scale(c(0, 5), squish))
mid_squish <- cdata(base + y_scale(c(3, 7), squish))
# Points are always at the top and bottom
expect_equal(low_censor[[2]]$y, c(0, 1))
expect_equal(mid_censor[[2]]$y, c(0, 1))
expect_equal(low_squish[[2]]$y, c(0, 1))
expect_equal(mid_squish[[2]]$y, c(0, 1))
# Bars depend on limits and oob
expect_equal(low_censor[[1]]$y, c(0.2, 1))
expect_equal(mid_censor[[1]]$y, c(0.5))
expect_equal(low_squish[[1]]$y, c(0.2, 1, 1))
expect_equal(mid_squish[[1]]$y, c(0, 0.5, 1))
})
test_that("scales looked for in appropriate place", {
xlabel <- function(x) ggplot_build(x)$panel$x_scales[[1]]$name
p0 <- qplot(mpg, wt, data = mtcars) + scale_x_continuous("0")
expect_equal(xlabel(p0), "0")
scale_x_continuous <- function(...) ggplot2::scale_x_continuous("1")
p1 <- qplot(mpg, wt, data = mtcars)
expect_equal(xlabel(p1), "1")
f <- function() {
scale_x_continuous <- function(...) ggplot2::scale_x_continuous("2")
qplot(mpg, wt, data = mtcars)
}
p2 <- f()
expect_equal(xlabel(p2), "2")
rm(scale_x_continuous)
p4 <- qplot(mpg, wt, data = mtcars)
expect_equal(xlabel(p4), NULL)
})
test_that("find_global searches in the right places", {
testenv <- new.env(parent = globalenv())
# This should find the scale object in the package environment
expect_identical(find_global("scale_colour_hue", testenv),
ggplot2::scale_colour_hue)
# Set an object with the same name in the environment
testenv$scale_colour_hue <- "foo"
# Now it should return the new object
expect_identical(find_global("scale_colour_hue", testenv), "foo")
# If we search in the empty env, we should end up with the object
# from the ggplot2 namespace
expect_identical(find_global("scale_colour_hue", emptyenv()),
ggplot2::scale_colour_hue)
})
|