1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
context("Stats")
test_that("plot succeeds even if some computation fails", {
p1 <- ggplot(mtcars, aes(disp, mpg)) +
geom_point() +
facet_grid(gear ~ carb)
p2 <- p1 + geom_smooth()
b1 <- ggplot_build(p1)
expect_equal(length(b1$data), 1)
expect_warning(b2 <- ggplot_build(p2))
expect_equal(length(b2$data), 2)
})
# helper function for stat calc tests.
test_stat <- function(stat) {
stat$data <- transform(stat$data, PANEL = 1)
dat <- stat$compute_aesthetics(stat$data, ggplot())
dat <- add_group(dat)
stat$calc_statistic(dat, NULL)
}
context("stat-bin")
test_that("stat_sum", {
dat <- data.frame(x = c("a", "b", "c"), y = c(1, 5, 10))
# Should get an error when mapping/setting y and also using stat_bin
# But errors caught by internal tryCatch :()
# expect_error(ggplot_build(ggplot(dat, aes(x=x, y=y)) + geom_bar()),
# "Mapping a variable to y and also using stat=\"bin\"")
# expect_error(p <- ggplot_build(ggplot(dat, aes(x=x, y=y)) + geom_bar(stat="bin")),
# "Mapping a variable to y and also using stat=\"bin\"")
#
# expect_error(p <- ggplot_build(ggplot(dat, aes(x=x)) + geom_bar(y=5)),
# "Mapping a variable to y and also using stat=\"bin\"")
# This gives an error (it would probably be OK if just one
# of these happened, but this test looks for both)
dat2 <- data.frame(x = c("a", "b", "c", "a", "b", "c"), y = c(1, 5, 10, 2, 3, 4))
# expect_error(
# p <- ggplot_build(ggplot(dat2, aes(x=x, y=y)) + geom_bar()))
})
context("stat-sum")
test_that("stat_sum", {
d <- diamonds[1:1000, ]
all_ones <- function(x) all.equal(mean(x), 1)
ret <- test_stat(stat_sum(aes(x = cut, y = clarity), data = d))
expect_equal(dim(ret), c(38, 5))
expect_equal(sum(ret$n), nrow(d))
expect_true(all_ones(ret$prop))
ret <- test_stat(stat_sum(aes(x = cut, y = clarity, group = 1), data = d))
expect_equal(dim(ret), c(38, 5))
expect_equal(sum(ret$n), nrow(d))
expect_equal(sum(ret$prop), 1)
ret <- test_stat(stat_sum(aes(x = cut, y = clarity, group = cut), data = d))
expect_equal(dim(ret), c(38, 5))
expect_equal(sum(ret$n), nrow(d))
expect_true(all_ones(tapply(ret$prop, ret$x, FUN = sum)))
ret <- test_stat(stat_sum(aes(x = cut, y = clarity, group = cut, colour = cut), data = d))
expect_equal(dim(ret), c(38, 6))
expect_equal(ret$x, ret$colour)
expect_equal(sum(ret$n), nrow(d))
expect_true(all_ones(tapply(ret$prop, ret$x, FUN = sum)))
ret <- test_stat(stat_sum(aes(x = cut, y = clarity, group = clarity), data = d))
expect_equal(dim(ret), c(38, 5))
expect_equal(sum(ret$n), nrow(d))
expect_true(all_ones(tapply(ret$prop, ret$y, FUN = sum)))
ret <- test_stat(stat_sum(aes(x = cut, y = clarity, group = clarity, colour = cut), data = d))
expect_equal(dim(ret), c(38, 6))
expect_equal(ret$x, ret$colour)
expect_equal(sum(ret$n), nrow(d))
expect_true(all_ones(tapply(ret$prop, ret$y, FUN = sum)))
ret <- test_stat(stat_sum(aes(x = cut, y = clarity, group = 1, weight = price), data = d))
expect_equal(dim(ret), c(38, 5))
expect_equal(sum(ret$n), sum(d$price))
expect_equal(sum(ret$prop), 1)
})
# helper function for stat calc tests.
test_stat_scale <- function(stat, scale) {
stat$data <- transform(stat$data, PANEL = 1)
dat <- stat$compute_aesthetics(stat$data, ggplot())
dat <- add_group(dat)
stat$calc_statistic(dat, scale)
}
context("stat-bin2d")
test_that("stat-bin2d", {
d <- diamonds[1:1000,]
full_scales <- list(x = scale_x_continuous(limits = range(d$carat, na.rm=TRUE)),
y = scale_y_continuous(limits = range(d$depth, na.rm=TRUE)))
ret <- test_stat_scale(stat_bin2d(aes(x = carat, y = depth), data=d), full_scales)
expect_equal(dim(ret), c(191,12))
d$carat[1] <- NA
d$depth[2] <- NA
full_scales <- list(x = scale_x_continuous(limits = range(d$carat, na.rm=TRUE)),
y = scale_y_continuous(limits = range(d$depth, na.rm=TRUE)))
ret <- test_stat_scale(stat_bin2d(aes(x = carat, y = depth), data=d), full_scales)
expect_equal(dim(ret), c(191,12))
})
context("stat-density2d")
test_that("stat-density2d", {
full_scales <- list(x = scale_x_continuous(limits=c(1,6)),
y = scale_y_continuous(limits=c(5,40)))
ret <- test_stat_scale(stat_density2d(aes(x = wt, y = mpg), data = mtcars), full_scales)
# Check that the contour data goes beyond data range.
# The specific values below are sort of arbitrary; but they go beyond the range
# of the data
expect_true(min(ret$x) < 1.2)
expect_true(max(ret$x) > 5.8)
expect_true(min(ret$y) < 8)
expect_true(max(ret$y) > 35)
})
|