1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
% Generated by roxygen2 (4.0.1): do not edit by hand
\name{geom_boxplot}
\alias{geom_boxplot}
\title{Box and whiskers plot.}
\usage{
geom_boxplot(mapping = NULL, data = NULL, stat = "boxplot",
position = "dodge", outlier.colour = NULL, outlier.shape = NULL,
outlier.size = NULL, notch = FALSE, notchwidth = 0.5,
varwidth = FALSE, ...)
}
\arguments{
\item{outlier.colour}{colour for outlying points. Uses the default from geom_point().}
\item{outlier.shape}{shape of outlying points. Uses the default from geom_point().}
\item{outlier.size}{size of outlying points. Uses the default from geom_point().}
\item{notch}{if \code{FALSE} (default) make a standard box plot. If
\code{TRUE}, make a notched box plot. Notches are used to compare groups;
if the notches of two boxes do not overlap, this is strong evidence that
the medians differ.}
\item{notchwidth}{for a notched box plot, width of the notch relative to
the body (default 0.5)}
\item{varwidth}{if \code{FALSE} (default) make a standard box plot. If
\code{TRUE}, boxes are drawn with widths proportional to the
square-roots of the number of observations in the groups (possibly
weighted, using the \code{weight} aesthetic).}
\item{mapping}{The aesthetic mapping, usually constructed with
\code{\link{aes}} or \code{\link{aes_string}}. Only needs to be set
at the layer level if you are overriding the plot defaults.}
\item{data}{A layer specific dataset - only needed if you want to override
the plot defaults.}
\item{stat}{The statistical transformation to use on the data for this
layer.}
\item{position}{The position adjustment to use for overlapping points
on this layer}
\item{...}{other arguments passed on to \code{\link{layer}}. This can
include aesthetics whose values you want to set, not map. See
\code{\link{layer}} for more details.}
}
\description{
The upper and lower "hinges" correspond to the first and third quartiles
(the 25th and 75th percentiles). This differs slightly from the method used
by the \code{boxplot} function, and may be apparent with small samples.
See \code{\link{boxplot.stats}} for for more information on how hinge
positions are calculated for \code{boxplot}.
}
\details{
The upper whisker extends from the hinge to the highest value that is within
1.5 * IQR of the hinge, where IQR is the inter-quartile range, or distance
between the first and third quartiles. The lower whisker extends from the
hinge to the lowest value within 1.5 * IQR of the hinge. Data beyond the
end of the whiskers are outliers and plotted as points (as specified by Tukey).
In a notched box plot, the notches extend \code{1.58 * IQR / sqrt(n)}.
This gives a roughly 95% confidence interval for comparing medians.
See McGill et al. (1978) for more details.
}
\section{Aesthetics}{
\Sexpr[results=rd,stage=build]{ggplot2:::rd_aesthetics("geom", "boxplot")}
}
\examples{
\donttest{
p <- ggplot(mtcars, aes(factor(cyl), mpg))
p + geom_boxplot()
qplot(factor(cyl), mpg, data = mtcars, geom = "boxplot")
p + geom_boxplot() + geom_jitter()
p + geom_boxplot() + coord_flip()
qplot(factor(cyl), mpg, data = mtcars, geom = "boxplot") +
coord_flip()
p + geom_boxplot(notch = TRUE)
p + geom_boxplot(notch = TRUE, notchwidth = .3)
p + geom_boxplot(outlier.colour = "green", outlier.size = 3)
# Add aesthetic mappings
# Note that boxplots are automatically dodged when any aesthetic is
# a factor
p + geom_boxplot(aes(fill = cyl))
p + geom_boxplot(aes(fill = factor(cyl)))
p + geom_boxplot(aes(fill = factor(vs)))
p + geom_boxplot(aes(fill = factor(am)))
# Set aesthetics to fixed value
p + geom_boxplot(fill = "grey80", colour = "#3366FF")
qplot(factor(cyl), mpg, data = mtcars, geom = "boxplot",
colour = I("#3366FF"))
# Scales vs. coordinate transforms -------
# Scale transformations occur before the boxplot statistics are computed.
# Coordinate transformations occur afterwards. Observe the effect on the
# number of outliers.
library(plyr) # to access round_any
m <- ggplot(movies, aes(y = votes, x = rating,
group = round_any(rating, 0.5)))
m + geom_boxplot()
m + geom_boxplot() + scale_y_log10()
m + geom_boxplot() + coord_trans(y = "log10")
m + geom_boxplot() + scale_y_log10() + coord_trans(y = "log10")
# Boxplots with continuous x:
# Use the group aesthetic to group observations in boxplots
qplot(year, budget, data = movies, geom = "boxplot")
qplot(year, budget, data = movies, geom = "boxplot",
group = round_any(year, 10, floor))
# Using precomputed statistics
# generate sample data
abc <- adply(matrix(rnorm(100), ncol = 5), 2, quantile, c(0, .25, .5, .75, 1))
b <- ggplot(abc, aes(x = X1, ymin = `0\%`, lower = `25\%`,
middle = `50\%`, upper = `75\%`, ymax = `100\%`))
b + geom_boxplot(stat = "identity")
b + geom_boxplot(stat = "identity") + coord_flip()
b + geom_boxplot(aes(fill = X1), stat = "identity")
# Using varwidth
p + geom_boxplot(varwidth = TRUE)
qplot(factor(cyl), mpg, data = mtcars, geom = "boxplot", varwidth = TRUE)
# Update the defaults for the outliers by changing the defaults for geom_point
p <- ggplot(mtcars, aes(factor(cyl), mpg))
p + geom_boxplot()
update_geom_defaults("point", list(shape = 1, colour = "red", size = 5))
p + geom_boxplot()
}
}
\references{
McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of
box plots. The American Statistician 32, 12-16.
}
\seealso{
\code{\link{stat_quantile}} to view quantiles conditioned on a
continuous variable, \code{\link{geom_jitter}} for another way to look
at conditional distributions"
}
|