1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
% Generated by roxygen2 (4.0.1): do not edit by hand
\name{geom_histogram}
\alias{geom_histogram}
\title{Histogram}
\usage{
geom_histogram(mapping = NULL, data = NULL, stat = "bin",
position = "stack", ...)
}
\arguments{
\item{mapping}{The aesthetic mapping, usually constructed with
\code{\link{aes}} or \code{\link{aes_string}}. Only needs to be set
at the layer level if you are overriding the plot defaults.}
\item{data}{A layer specific dataset - only needed if you want to override
the plot defaults.}
\item{stat}{The statistical transformation to use on the data for this
layer.}
\item{position}{The position adjustment to use for overlapping points
on this layer}
\item{...}{other arguments passed on to \code{\link{layer}}. This can
include aesthetics whose values you want to set, not map. See
\code{\link{layer}} for more details.}
}
\description{
\code{geom_histogram} is an alias for \code{\link{geom_bar}} plus
\code{\link{stat_bin}} so you will need to look at the documentation for
those objects to get more information about the parameters.
}
\details{
By default, \code{stat_bin} uses 30 bins - this is not a good default,
but the idea is to get you experimenting with different binwidths. You
may need to look at a few to uncover the full story behind your data.
}
\section{Aesthetics}{
\Sexpr[results=rd,stage=build]{ggplot2:::rd_aesthetics("geom", "histogram")}
}
\examples{
\donttest{
set.seed(5689)
movies <- movies[sample(nrow(movies), 1000), ]
# Simple examples
qplot(rating, data=movies, geom="histogram")
qplot(rating, data=movies, weight=votes, geom="histogram")
qplot(rating, data=movies, weight=votes, geom="histogram", binwidth=1)
qplot(rating, data=movies, weight=votes, geom="histogram", binwidth=0.1)
# More complex
m <- ggplot(movies, aes(x=rating))
m + geom_histogram()
m + geom_histogram(aes(y = ..density..)) + geom_density()
m + geom_histogram(binwidth = 1)
m + geom_histogram(binwidth = 0.5)
m + geom_histogram(binwidth = 0.1)
# Add aesthetic mappings
m + geom_histogram(aes(weight = votes))
m + geom_histogram(aes(y = ..count..))
m + geom_histogram(aes(fill = ..count..))
# Change scales
m + geom_histogram(aes(fill = ..count..)) +
scale_fill_gradient("Count", low = "green", high = "red")
# Often we don't want the height of the bar to represent the
# count of observations, but the sum of some other variable.
# For example, the following plot shows the number of movies
# in each rating.
qplot(rating, data=movies, geom="bar", binwidth = 0.1)
# If, however, we want to see the number of votes cast in each
# category, we need to weight by the votes variable
qplot(rating, data=movies, geom="bar", binwidth = 0.1,
weight=votes, ylab = "votes")
m <- ggplot(movies, aes(x = votes))
# For transformed scales, binwidth applies to the transformed data.
# The bins have constant width on the transformed scale.
m + geom_histogram() + scale_x_log10()
m + geom_histogram(binwidth = 1) + scale_x_log10()
m + geom_histogram() + scale_x_sqrt()
m + geom_histogram(binwidth = 10) + scale_x_sqrt()
# For transformed coordinate systems, the binwidth applies to the
# raw data. The bins have constant width on the original scale.
# Using log scales does not work here, because the first
# bar is anchored at zero, and so when transformed becomes negative
# infinity. This is not a problem when transforming the scales, because
# no observations have 0 ratings.
m + geom_histogram(origin = 0) + coord_trans(x = "log10")
# Use origin = 0, to make sure we don't take sqrt of negative values
m + geom_histogram(origin = 0) + coord_trans(x = "sqrt")
m + geom_histogram(origin = 0, binwidth = 1000) + coord_trans(x = "sqrt")
# You can also transform the y axis. Remember that the base of the bars
# has value 0, so log transformations are not appropriate
m <- ggplot(movies, aes(x = rating))
m + geom_histogram(binwidth = 0.5) + scale_y_sqrt()
m + geom_histogram(binwidth = 0.5) + scale_y_reverse()
# Set aesthetics to fixed value
m + geom_histogram(colour = "darkgreen", fill = "white", binwidth = 0.5)
# Use facets
m <- m + geom_histogram(binwidth = 0.5)
m + facet_grid(Action ~ Comedy)
# Often more useful to use density on the y axis when facetting
m <- m + aes(y = ..density..)
m + facet_grid(Action ~ Comedy)
m + facet_wrap(~ mpaa)
# Multiple histograms on the same graph
# see ?position, ?position_fill, etc for more details.
set.seed(6298)
diamonds_small <- diamonds[sample(nrow(diamonds), 1000), ]
ggplot(diamonds_small, aes(x=price)) + geom_bar()
hist_cut <- ggplot(diamonds_small, aes(x=price, fill=cut))
hist_cut + geom_bar() # defaults to stacking
hist_cut + geom_bar(position="fill")
hist_cut + geom_bar(position="dodge")
# This is easy in ggplot2, but not visually effective. It's better
# to use a frequency polygon or density plot. Like this:
ggplot(diamonds_small, aes(price, ..density.., colour = cut)) +
geom_freqpoly(binwidth = 1000)
# Or this:
ggplot(diamonds_small, aes(price, colour = cut)) +
geom_density()
# Or if you want to be fancy, maybe even this:
ggplot(diamonds_small, aes(price, fill = cut)) +
geom_density(alpha = 0.2)
# Which looks better when the distributions are more distinct
ggplot(diamonds_small, aes(depth, fill = cut)) +
geom_density(alpha = 0.2) + xlim(55, 70)
}
rm(movies)
}
|