File: stat_density.Rd

package info (click to toggle)
r-cran-ggplot2 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,412 kB
  • sloc: sh: 9; makefile: 1
file content (125 lines) | stat: -rw-r--r-- 4,126 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
% Generated by roxygen2 (4.0.1): do not edit by hand
\name{stat_density}
\alias{stat_density}
\title{1d kernel density estimate.}
\usage{
stat_density(mapping = NULL, data = NULL, geom = "area",
  position = "stack", adjust = 1, kernel = "gaussian", trim = FALSE,
  na.rm = FALSE, ...)
}
\arguments{
\item{adjust}{see \code{\link{density}} for details}

\item{kernel}{kernel used for density estimation, see
\code{\link{density}} for details}

\item{trim}{if \code{TRUE}, the default, densities are trimmed to the
actual range of the data.  If \code{FALSE}, they are extended by the
default 3 bandwidths (as specified by the \code{cut} parameter to
\code{\link{density}})}

\item{na.rm}{If \code{FALSE} (the default), removes missing values with
a warning.  If \code{TRUE} silently removes missing values.}

\item{mapping}{The aesthetic mapping, usually constructed with
\code{\link{aes}} or \code{\link{aes_string}}. Only needs to be set
at the layer level if you are overriding the plot defaults.}

\item{data}{A layer specific dataset - only needed if you want to override
the plot defaults.}

\item{geom}{The geometric object to use display the data}

\item{position}{The position adjustment to use for overlappling points
on this layer}

\item{...}{other arguments passed on to \code{\link{layer}}. This can
include aesthetics whose values you want to set, not map. See
\code{\link{layer}} for more details.}
}
\value{
data.frame with additional columns:
  \item{density}{density estimate}
  \item{count}{density * number of points - useful for stacked density
     plots}
  \item{scaled}{density estimate, scaled to maximum of 1}
}
\description{
1d kernel density estimate.
}
\section{Aesthetics}{

\Sexpr[results=rd,stage=build]{ggplot2:::rd_aesthetics("stat", "density")}
}
\examples{
\donttest{
m <- ggplot(movies, aes(x = rating))
m + geom_density()

# Adjust parameters
m + geom_density(kernel = "rectangular")
m + geom_density(kernel = "biweight")
m + geom_density(kernel = "epanechnikov")
m + geom_density(adjust=1/5) # Very rough
m + geom_density(adjust=5) # Very smooth

# Adjust aesthetics
m + geom_density(aes(fill=factor(Drama)), size=2)
# Scale so peaks have same height:
m + geom_density(aes(fill=factor(Drama), y = ..scaled..), size=2)

m + geom_density(colour="darkgreen", size=2)
m + geom_density(colour="darkgreen", size=2, fill=NA)
m + geom_density(colour="darkgreen", size=2, fill="green")

# Change scales
(m <- ggplot(movies, aes(x=votes)) + geom_density(trim = TRUE))
m + scale_x_log10()
m + coord_trans(x="log10")
m + scale_x_log10() + coord_trans(x="log10")

# Also useful with
m + stat_bin()

# Make a volcano plot
ggplot(diamonds, aes(x = price)) +
  stat_density(aes(ymax = ..density..,  ymin = -..density..),
    fill = "grey50", colour = "grey50",
    geom = "ribbon", position = "identity") +
  facet_grid(. ~ cut) +
  coord_flip()

# Stacked density plots
# If you want to create a stacked density plot, you need to use
# the 'count' (density * n) variable instead of the default density

# Loses marginal densities
qplot(rating, ..density.., data=movies, geom="density", fill=mpaa, position="stack")
# Preserves marginal densities
qplot(rating, ..count.., data=movies, geom="density", fill=mpaa, position="stack")

# You can use position="fill" to produce a conditional density estimate
qplot(rating, ..count.., data=movies, geom="density", fill=mpaa, position="fill")

# Need to be careful with weighted data
m <- ggplot(movies, aes(x=rating, weight=votes))
m + geom_histogram(aes(y = ..count..)) + geom_density(fill=NA)

m <- ggplot(movies, aes(x=rating, weight=votes/sum(votes)))
m + geom_histogram(aes(y=..density..)) + geom_density(fill=NA, colour="black")

library(plyr) # to access round_any
movies$decade <- round_any(movies$year, 10)
m <- ggplot(movies, aes(x=rating, colour=decade, group=decade))
m + geom_density(fill=NA)
m + geom_density(fill=NA) + aes(y = ..count..)

# Use qplot instead
qplot(length, data=movies, geom="density", weight=rating)
qplot(length, data=movies, geom="density", weight=rating/sum(rating))
}
}
\seealso{
\code{\link{stat_bin}} for the histogram
}