File: stat_qq.Rd

package info (click to toggle)
r-cran-ggplot2 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,412 kB
  • sloc: sh: 9; makefile: 1
file content (70 lines) | stat: -rw-r--r-- 2,013 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
% Generated by roxygen2 (4.0.1): do not edit by hand
\name{stat_qq}
\alias{stat_qq}
\title{Calculation for quantile-quantile plot.}
\usage{
stat_qq(mapping = NULL, data = NULL, geom = "point",
  position = "identity", distribution = qnorm, dparams = list(),
  na.rm = FALSE, ...)
}
\arguments{
\item{distribution}{Distribution function to use, if x not specified}

\item{dparams}{Parameters for distribution function}

\item{...}{Other arguments passed to distribution function}

\item{na.rm}{If \code{FALSE} (the default), removes missing values with
a warning.  If \code{TRUE} silently removes missing values.}

\item{mapping}{The aesthetic mapping, usually constructed with
\code{\link{aes}} or \code{\link{aes_string}}. Only needs to be set
at the layer level if you are overriding the plot defaults.}

\item{data}{A layer specific dataset - only needed if you want to override
the plot defaults.}

\item{geom}{The geometric object to use display the data}

\item{position}{The position adjustment to use for overlappling points
on this layer}
}
\value{
a data.frame with additional columns:
  \item{sample}{sample quantiles}
  \item{theoretical}{theoretical quantiles}
}
\description{
Calculation for quantile-quantile plot.
}
\section{Aesthetics}{

\Sexpr[results=rd,stage=build]{ggplot2:::rd_aesthetics("stat", "qq")}
}
\examples{
\donttest{
# From ?qqplot
y <- rt(200, df = 5)
qplot(sample = y, stat="qq")

# qplot is smart enough to use stat_qq if you use sample
qplot(sample = y)
qplot(sample = precip)

qplot(sample = y, dist = qt, dparams = list(df = 5))

df <- data.frame(y)
ggplot(df, aes(sample = y)) + stat_qq()
ggplot(df, aes(sample = y)) + geom_point(stat = "qq")

# Use fitdistr from MASS to estimate distribution params
library(MASS)
params <- as.list(fitdistr(y, "t")$estimate)
ggplot(df, aes(sample = y)) + stat_qq(dist = qt, dparam = params)

# Using to explore the distribution of a variable
qplot(sample = mpg, data = mtcars)
qplot(sample = mpg, data = mtcars, colour = factor(cyl))
}
}