File: stat_summary.Rd

package info (click to toggle)
r-cran-ggplot2 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,412 kB
  • sloc: sh: 9; makefile: 1
file content (142 lines) | stat: -rw-r--r-- 5,207 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
% Generated by roxygen2 (4.0.1): do not edit by hand
\name{stat_summary}
\alias{stat_summary}
\title{Summarise y values at every unique x.}
\usage{
stat_summary(mapping = NULL, data = NULL, geom = "pointrange",
  position = "identity", ...)
}
\arguments{
\item{mapping}{The aesthetic mapping, usually constructed with
\code{\link{aes}} or \code{\link{aes_string}}. Only needs to be set
at the layer level if you are overriding the plot defaults.}

\item{data}{A layer specific dataset - only needed if you want to override
the plot defaults.}

\item{geom}{The geometric object to use display the data}

\item{position}{The position adjustment to use for overlappling points
on this layer}

\item{...}{other arguments passed on to \code{\link{layer}}. This can
include aesthetics whose values you want to set, not map. See
\code{\link{layer}} for more details.}
}
\value{
a data.frame with additional columns:
  \item{fun.data}{Complete summary function. Should take data frame as
     input and return data frame as output}
  \item{fun.ymin}{ymin summary function (should take numeric vector and
    return single number)}
  \item{fun.y}{y summary function (should take numeric vector and return
    single number)}
  \item{fun.ymax}{ymax summary function (should take numeric vector and
    return single number)}
}
\description{
\code{stat_summary} allows for tremendous flexibilty in the specification
of summary functions. The summary function can either supply individual
summary functions for each of y, ymin and ymax (with \code{fun.y},
\code{fun.ymax}, \code{fun.ymin}), or return a data frame containing any
number of aesthetiics with with \code{fun.data}. All summary functions
are called with a single vector of values, \code{x}.
}
\details{
A simple vector function is easiest to work with as you can return a single
number, but is somewhat less flexible.  If your summary function operates
on a data.frame it should return a data frame with variables that the geom
can use.
}
\section{Aesthetics}{

\Sexpr[results=rd,stage=build]{ggplot2:::rd_aesthetics("stat", "summary")}
}
\examples{
\donttest{
# Basic operation on a small dataset
d <- qplot(cyl, mpg, data=mtcars)
d + stat_summary(fun.data = "mean_cl_boot", colour = "red")

p <- qplot(cyl, mpg, data = mtcars, stat="summary", fun.y = "mean")
p
# Don't use ylim to zoom into a summary plot - this throws the
# data away
p + ylim(15, 30)
# Instead use coord_cartesian
p + coord_cartesian(ylim = c(15, 30))

# You can supply individual functions to summarise the value at
# each x:

stat_sum_single <- function(fun, geom="point", ...) {
  stat_summary(fun.y=fun, colour="red", geom=geom, size = 3, ...)
}

d + stat_sum_single(mean)
d + stat_sum_single(mean, geom="line")
d + stat_sum_single(median)
d + stat_sum_single(sd)

d + stat_summary(fun.y = mean, fun.ymin = min, fun.ymax = max,
  colour = "red")

d + aes(colour = factor(vs)) + stat_summary(fun.y = mean, geom="line")

# Alternatively, you can supply a function that operates on a data.frame.
# A set of useful summary functions is provided from the Hmisc package:

stat_sum_df <- function(fun, geom="crossbar", ...) {
  stat_summary(fun.data=fun, colour="red", geom=geom, width=0.2, ...)
}

# The crossbar geom needs grouping to be specified when used with
# a continuous x axis.
d + stat_sum_df("mean_cl_boot", mapping = aes(group = cyl))
d + stat_sum_df("mean_sdl", mapping = aes(group = cyl))
d + stat_sum_df("mean_sdl", mult = 1, mapping = aes(group = cyl))
d + stat_sum_df("median_hilow", mapping = aes(group = cyl))

# There are lots of different geoms you can use to display the summaries

d + stat_sum_df("mean_cl_normal", mapping = aes(group = cyl))
d + stat_sum_df("mean_cl_normal", geom = "errorbar")
d + stat_sum_df("mean_cl_normal", geom = "pointrange")
d + stat_sum_df("mean_cl_normal", geom = "smooth")

# Summaries are more useful with a bigger data set:
mpg2 <- subset(mpg, cyl != 5L)
m <- ggplot(mpg2, aes(x=cyl, y=hwy)) +
        geom_point() +
        stat_summary(fun.data = "mean_sdl", geom = "linerange",
                     colour = "red", size = 2, mult = 1) +
       xlab("cyl")
m
# An example with highly skewed distributions:
set.seed(596)
mov <- movies[sample(nrow(movies), 1000), ]
 m2 <- ggplot(mov, aes(x= factor(round(rating)), y=votes)) + geom_point()
 m2 <- m2 + stat_summary(fun.data = "mean_cl_boot", geom = "crossbar",
                         colour = "red", width = 0.3) + xlab("rating")
m2
# Notice how the overplotting skews off visual perception of the mean
# supplementing the raw data with summary statistics is _very_ important

# Next, we'll look at votes on a log scale.

# Transforming the scale means the data are transformed
# first, after which statistics are computed:
m2 + scale_y_log10()
# Transforming the coordinate system occurs after the
# statistic has been computed. This means we're calculating the summary on the raw data
# and stretching the geoms onto the log scale.  Compare the widths of the
# standard errors.
m2 + coord_trans(y="log10")
}
}
\seealso{
\code{\link{geom_errorbar}}, \code{\link{geom_pointrange}},
 \code{\link{geom_linerange}}, \code{\link{geom_crossbar}} for geoms to
 display summarised data
}