File: stat-bin2d.r

package info (click to toggle)
r-cran-ggplot2 3.3.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 8,184 kB
  • sloc: sh: 15; makefile: 5
file content (158 lines) | stat: -rw-r--r-- 4,523 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#' @param bins numeric vector giving number of bins in both vertical and
#'   horizontal directions. Set to 30 by default.
#' @param binwidth Numeric vector giving bin width in both vertical and
#'   horizontal directions. Overrides `bins` if both set.
#' @param drop if `TRUE` removes all cells with 0 counts.
#' @export
#' @rdname geom_bin2d
#' @section Computed variables:
#' \describe{
#'   \item{count}{number of points in bin}
#'   \item{density}{density of points in bin, scaled to integrate to 1}
#'   \item{ncount}{count, scaled to maximum of 1}
#'   \item{ndensity}{density, scaled to maximum of 1}
#' }
stat_bin_2d <- function(mapping = NULL, data = NULL,
                        geom = "tile", position = "identity",
                        ...,
                        bins = 30,
                        binwidth = NULL,
                        drop = TRUE,
                        na.rm = FALSE,
                        show.legend = NA,
                        inherit.aes = TRUE) {
  layer(
    data = data,
    mapping = mapping,
    stat = StatBin2d,
    geom = geom,
    position = position,
    show.legend = show.legend,
    inherit.aes = inherit.aes,
    params = list(
      bins = bins,
      binwidth = binwidth,
      drop = drop,
      na.rm = na.rm,
      ...
    )
  )
}


#' @export
#' @rdname geom_bin2d
#' @usage NULL
stat_bin2d <- stat_bin_2d

#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
StatBin2d <- ggproto("StatBin2d", Stat,
  default_aes = aes(fill = after_stat(count)),
  required_aes = c("x", "y"),

  compute_group = function(data, scales, binwidth = NULL, bins = 30,
                           breaks = NULL, origin = NULL, drop = TRUE) {

    origin <- dual_param(origin, list(NULL, NULL))
    binwidth <- dual_param(binwidth, list(NULL, NULL))
    breaks <- dual_param(breaks, list(NULL, NULL))
    bins <- dual_param(bins, list(x = 30, y = 30))

    xbreaks <- bin2d_breaks(scales$x, breaks$x, origin$x, binwidth$x, bins$x)
    ybreaks <- bin2d_breaks(scales$y, breaks$y, origin$y, binwidth$y, bins$y)

    xbin <- cut(data$x, xbreaks, include.lowest = TRUE, labels = FALSE)
    ybin <- cut(data$y, ybreaks, include.lowest = TRUE, labels = FALSE)

    if (is.null(data$weight))
      data$weight <- 1

    out <- tapply_df(data$weight, list(xbin = xbin, ybin = ybin), sum, drop = drop)

    xdim <- bin_loc(xbreaks, out$xbin)
    out$x <- xdim$mid
    out$width <- xdim$length

    ydim <- bin_loc(ybreaks, out$ybin)
    out$y <- ydim$mid
    out$height <- ydim$length

    out$count <- out$value
    out$ncount <- out$count / max(out$count, na.rm = TRUE)
    out$density <- out$count / sum(out$count, na.rm = TRUE)
    out$ndensity <- out$density / max(out$density, na.rm = TRUE)
    out
  }
)

dual_param <- function(x, default = list(x = NULL, y = NULL)) {
  if (is.null(x)) {
    default
  } else if (length(x) == 2) {
    if (is.list(x) && !is.null(names(x))) {
      x
    } else {
      list(x = x[[1]], y = x[[2]])
    }
  } else {
    list(x = x, y = x)
  }
}

bin2d_breaks <- function(scale, breaks = NULL, origin = NULL, binwidth = NULL,
                      bins = 30, right = TRUE) {
  # Bins for categorical data should take the width of one level,
  # and should show up centered over their tick marks. All other parameters
  # are ignored.
  if (scale$is_discrete()) {
    breaks <- scale$get_breaks()
    return(-0.5 + seq_len(length(breaks) + 1))
  } else {
    if (!is.null(breaks)) {
      breaks <- scale$transform(breaks)
    }
  }

  if (!is.null(breaks))
    return(breaks)

  range <- scale$get_limits()

  if (is.null(binwidth) || identical(binwidth, NA)) {
    binwidth <- diff(range) / bins
  }
  if (!(is.numeric(binwidth) && length(binwidth) == 1)) abort("`binwidth` must be a numeric scalar")

  if (is.null(origin) || identical(origin, NA)) {
    origin <- round_any(range[1], binwidth, floor)
  }
  if (!(is.numeric(origin) && length(origin) == 1)) abort("`origin` must be a numeric scalar")

  breaks <- seq(origin, range[2] + binwidth, binwidth)
  adjust_breaks(breaks, right)
}

adjust_breaks <- function(x, right = TRUE) {
  diddle <- 1e-07 * stats::median(diff(x))
  if (right) {
    fuzz <- c(-diddle, rep.int(diddle, length(x) - 1))
  } else {
    fuzz <- c(rep.int(-diddle, length(x) - 1), diddle)
  }
  sort(x) + fuzz
}

bin_loc <- function(x, id) {
  left <- x[-length(x)]
  right <- x[-1]

  list(
    left = left[id],
    right = right[id],
    mid = ((left + right) / 2)[id],
    length = diff(x)[id]
  )
}