File: stat-ydensity.r

package info (click to toggle)
r-cran-ggplot2 3.3.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 8,184 kB
  • sloc: sh: 15; makefile: 5
file content (136 lines) | stat: -rw-r--r-- 4,535 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#' @inheritParams layer
#' @inheritParams geom_point
#' @inheritParams stat_density
#' @param scale if "area" (default), all violins have the same area (before trimming
#'   the tails). If "count", areas are scaled proportionally to the number of
#'   observations. If "width", all violins have the same maximum width.
#' @section Computed variables:
#' \describe{
#'   \item{density}{density estimate}
#'   \item{scaled}{density estimate, scaled to maximum of 1}
#'   \item{count}{density * number of points - probably useless for violin plots}
#'   \item{violinwidth}{density scaled for the violin plot, according to area, counts
#'                      or to a constant maximum width}
#'   \item{n}{number of points}
#'   \item{width}{width of violin bounding box}
#' }
#' @seealso [geom_violin()] for examples, and [stat_density()]
#'   for examples with data along the x axis.
#' @export
#' @rdname geom_violin
stat_ydensity <- function(mapping = NULL, data = NULL,
                          geom = "violin", position = "dodge",
                          ...,
                          bw = "nrd0",
                          adjust = 1,
                          kernel = "gaussian",
                          trim = TRUE,
                          scale = "area",
                          na.rm = FALSE,
                          orientation = NA,
                          show.legend = NA,
                          inherit.aes = TRUE) {
  scale <- match.arg(scale, c("area", "count", "width"))

  layer(
    data = data,
    mapping = mapping,
    stat = StatYdensity,
    geom = geom,
    position = position,
    show.legend = show.legend,
    inherit.aes = inherit.aes,
    params = list(
      bw = bw,
      adjust = adjust,
      kernel = kernel,
      trim = trim,
      scale = scale,
      na.rm = na.rm,
      ...
    )
  )
}


#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
StatYdensity <- ggproto("StatYdensity", Stat,
  required_aes = c("x", "y"),
  non_missing_aes = "weight",

  setup_params = function(data, params) {
    params$flipped_aes <- has_flipped_aes(data, params, main_is_orthogonal = TRUE, group_has_equal = TRUE)

    params
  },

  extra_params = c("na.rm", "orientation"),

  compute_group = function(data, scales, width = NULL, bw = "nrd0", adjust = 1,
                       kernel = "gaussian", trim = TRUE, na.rm = FALSE, flipped_aes = FALSE) {
    if (nrow(data) < 3) return(new_data_frame())
    range <- range(data$y, na.rm = TRUE)
    modifier <- if (trim) 0 else 3
    bw <- calc_bw(data$y, bw)
    dens <- compute_density(data$y, data$w, from = range[1] - modifier*bw, to = range[2] + modifier*bw,
      bw = bw, adjust = adjust, kernel = kernel)

    dens$y <- dens$x
    dens$x <- mean(range(data$x))

    # Compute width if x has multiple values
    if (length(unique(data$x)) > 1) {
      width <- diff(range(data$x)) * 0.9
    }
    dens$width <- width

    dens
  },

  compute_panel = function(self, data, scales, width = NULL, bw = "nrd0", adjust = 1,
                           kernel = "gaussian", trim = TRUE, na.rm = FALSE,
                           scale = "area", flipped_aes = FALSE) {
    data <- flip_data(data, flipped_aes)
    data <- ggproto_parent(Stat, self)$compute_panel(
      data, scales, width = width, bw = bw, adjust = adjust, kernel = kernel,
      trim = trim, na.rm = na.rm
    )

    # choose how violins are scaled relative to each other
    data$violinwidth <- switch(scale,
      # area : keep the original densities but scale them to a max width of 1
      #        for plotting purposes only
      area = data$density / max(data$density),
      # count: use the original densities scaled to a maximum of 1 (as above)
      #        and then scale them according to the number of observations
      count = data$density / max(data$density) * data$n / max(data$n),
      # width: constant width (density scaled to a maximum of 1)
      width = data$scaled
    )
    data$flipped_aes <- flipped_aes
    flip_data(data, flipped_aes)
  }

)

calc_bw <- function(x, bw) {
  if (is.character(bw)) {
    if (length(x) < 2)
      abort("need at least 2 points to select a bandwidth automatically")
    bw <- switch(
      to_lower_ascii(bw),
      nrd0 = stats::bw.nrd0(x),
      nrd = stats::bw.nrd(x),
      ucv = stats::bw.ucv(x),
      bcv = stats::bw.bcv(x),
      sj = ,
      `sj-ste` = stats::bw.SJ(x, method = "ste"),
      `sj-dpi` = stats::bw.SJ(x, method = "dpi"),
      abort("unknown bandwidth rule")
    )
  }
  bw
}