File: test-scales.r

package info (click to toggle)
r-cran-ggplot2 3.3.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 8,184 kB
  • sloc: sh: 15; makefile: 5
file content (372 lines) | stat: -rw-r--r-- 11,564 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
context("Scales")

test_that("building a plot does not affect its scales", {
  dat <- data_frame(x = rnorm(20), y = rnorm(20))

  p <- ggplot(dat, aes(x, y)) + geom_point()
  expect_equal(length(p$scales$scales), 0)

  ggplot_build(p)
  expect_equal(length(p$scales$scales), 0)
})

test_that("ranges update only for variables listed in aesthetics", {
  sc <- scale_alpha()

  sc$train_df(data_frame(alpha = 1:10))
  expect_equal(sc$range$range, c(1, 10))

  sc$train_df(data_frame(alpha = 50))
  expect_equal(sc$range$range, c(1, 50))

  sc$train_df(data_frame(beta = 100))
  expect_equal(sc$range$range, c(1, 50))

  sc$train_df(data_frame())
  expect_equal(sc$range$range, c(1, 50))
})

test_that("mapping works", {
  sc <- scale_alpha(range = c(0, 1), na.value = 0)
  sc$train_df(data_frame(alpha = 1:10))

  expect_equal(
    sc$map_df(data_frame(alpha = 1:10))[[1]],
    seq(0, 1, length.out = 10)
  )

  expect_equal(sc$map_df(data_frame(alpha = NA))[[1]], 0)

  expect_equal(
    sc$map_df(data_frame(alpha = c(-10, 11)))[[1]],
    c(0, 0))
})

test_that("identity scale preserves input values", {
  df <- data_frame(x = 1:3, z = factor(letters[1:3]))

  # aesthetic-specific scales
  p1 <- ggplot(df,
    aes(x, z, colour = z, fill = z, shape = z, size = x, alpha = x)) +
    geom_point() +
    scale_colour_identity() +
    scale_fill_identity() +
    scale_shape_identity() +
    scale_size_identity() +
    scale_alpha_identity()
  d1 <- layer_data(p1)

  expect_equal(d1$colour, as.character(df$z))
  expect_equal(d1$fill, as.character(df$z))
  expect_equal(d1$shape, as.character(df$z))
  expect_equal(d1$size, as.numeric(df$z))
  expect_equal(d1$alpha, as.numeric(df$z))

  # generic scales
  p2 <- ggplot(df,
    aes(x, z, colour = z, fill = z, shape = z, size = x, alpha = x)) +
    geom_point() +
    scale_discrete_identity(aesthetics = c("colour", "fill", "shape")) +
    scale_continuous_identity(aesthetics = c("size", "alpha"))
  d2 <- layer_data(p2)

  expect_equal(d1, d2)
})

test_that("position scales are updated by all position aesthetics", {
  df <- data_frame(x = 1:3, y = 1:3)

  aesthetics <- list(
    aes(xend = x, yend = x),
    aes(xmin = x, ymin = x),
    aes(xmax = x, ymax = x),
    aes(xintercept = x, yintercept = y)
  )

  base <- ggplot(df, aes(x = 1, y = 1)) + geom_point()
  plots <- lapply(aesthetics, function(x) base %+% x)
  ranges <- lapply(plots, pranges)

  lapply(ranges, function(range) {
    expect_equal(range$x[[1]], c(1, 3))
    expect_equal(range$y[[1]], c(1, 3))
  })
})

test_that("position scales generate after stats", {
  df <- data_frame(x = factor(c(1, 1, 1)))
  plot <- ggplot(df, aes(x)) + geom_bar()
  ranges <- pranges(plot)

  expect_equal(ranges$x[[1]], c("1"))
  expect_equal(ranges$y[[1]], c(0, 3))
})

test_that("oob affects position values", {
  dat <- data_frame(x = c("a", "b", "c"), y = c(1, 5, 10))
  base <- ggplot(dat, aes(x, y)) +
    geom_col() +
    annotate("point", x = "a", y = c(-Inf, Inf))

  y_scale <- function(limits, oob = censor) {
    scale_y_continuous(limits = limits, oob = oob, expand = c(0, 0))
  }
  base + scale_y_continuous(limits = c(-0,5))

  expect_warning(low_censor <- cdata(base + y_scale(c(0, 5), censor)),
    "Removed 1 rows containing missing values")
  expect_warning(mid_censor <- cdata(base + y_scale(c(3, 7), censor)),
    "Removed 2 rows containing missing values")

  low_squish <- cdata(base + y_scale(c(0, 5), squish))
  mid_squish <- cdata(base + y_scale(c(3, 7), squish))

  # Points are always at the top and bottom
  expect_equal(low_censor[[2]]$y, c(0, 1))
  expect_equal(mid_censor[[2]]$y, c(0, 1))
  expect_equal(low_squish[[2]]$y, c(0, 1))
  expect_equal(mid_squish[[2]]$y, c(0, 1))

  # Bars depend on limits and oob
  expect_equal(low_censor[[1]]$y, c(0.2, 1))
  expect_equal(mid_censor[[1]]$y, c(0.5))
  expect_equal(low_squish[[1]]$y, c(0.2, 1, 1))
  expect_equal(mid_squish[[1]]$y, c(0, 0.5, 1))
})

test_that("all-Inf layers are not used for determining the type of scale", {
  d1 <- data_frame(x = c("a", "b"))
  p1 <- ggplot(d1, aes(x, x)) +
    # Inf is numeric, but means discrete values in this case
    annotate("rect", xmin = -Inf, xmax = Inf, ymin = -Inf, ymax = Inf, fill = "black") +
    geom_point()

  b1 <- ggplot_build(p1)
  expect_s3_class(b1$layout$panel_scales_x[[1]], "ScaleDiscretePosition")

  p2 <- ggplot() +
    # If the layer non-Inf value, it's considered
    annotate("rect", xmin = -Inf, xmax = 0, ymin = -Inf, ymax = Inf, fill = "black")

  b2 <- ggplot_build(p2)
  expect_s3_class(b2$layout$panel_scales_x[[1]], "ScaleContinuousPosition")
})

test_that("scales are looked for in appropriate place", {
  xlabel <- function(x) ggplot_build(x)$layout$panel_scales_x[[1]]$name
  p0 <- qplot(mpg, wt, data = mtcars) + scale_x_continuous("0")
  expect_equal(xlabel(p0), "0")

  scale_x_continuous <- function(...) ggplot2::scale_x_continuous("1")
  p1 <- qplot(mpg, wt, data = mtcars)
  expect_equal(xlabel(p1), "1")

  f <- function() {
    scale_x_continuous <- function(...) ggplot2::scale_x_continuous("2")
    qplot(mpg, wt, data = mtcars)
  }
  p2 <- f()
  expect_equal(xlabel(p2), "2")

  rm(scale_x_continuous)
  p4 <- qplot(mpg, wt, data = mtcars)
  expect_equal(xlabel(p4), waiver())
})

test_that("find_global searches in the right places", {
  testenv <- new.env(parent = globalenv())

  # This should find the scale object in the package environment
  expect_identical(find_global("scale_colour_hue", testenv),
    ggplot2::scale_colour_hue)

  # Set an object with the same name in the environment
  testenv$scale_colour_hue <- "foo"

  # Now it should return the new object
  expect_identical(find_global("scale_colour_hue", testenv), "foo")

  # If we search in the empty env, we should end up with the object
  # from the ggplot2 namespace
  expect_identical(find_global("scale_colour_hue", emptyenv()),
    ggplot2::scale_colour_hue)
})

test_that("scales warn when transforms introduces non-finite values", {
  df <- data_frame(x = c(1e1, 1e5), y = c(0, 100))

  p <- ggplot(df, aes(x, y)) +
    geom_point(size = 5) +
    scale_y_log10()

  expect_warning(ggplot_build(p), "Transformation introduced infinite values")
})

test_that("scales get their correct titles through layout", {
  df <- data_frame(x = c(1e1, 1e5), y = c(0, 100))

  p <- ggplot(df, aes(x, y)) +
    geom_point(size = 5)

  p <- ggplot_build(p)
  expect_identical(p$layout$xlabel(p$plot$labels)$primary, "x")
  expect_identical(p$layout$ylabel(p$plot$labels)$primary, "y")
})

test_that("size and alpha scales throw appropriate warnings for factors", {
  df <- data_frame(
    x = 1:3,
    y = 1:3,
    d = LETTERS[1:3],
    o = factor(LETTERS[1:3], ordered = TRUE)
  )
  p <- ggplot(df, aes(x, y))

  # There should be warnings when unordered factors are mapped to size/alpha
  expect_warning(
    ggplot_build(p + geom_point(aes(size = d))),
    "Using size for a discrete variable is not advised."
  )
  expect_warning(
    ggplot_build(p + geom_point(aes(alpha = d))),
    "Using alpha for a discrete variable is not advised."
  )
  # There should be no warnings for ordered factors
  expect_warning(ggplot_build(p + geom_point(aes(size = o))), NA)
  expect_warning(ggplot_build(p + geom_point(aes(alpha = o))), NA)
})

test_that("shape scale throws appropriate warnings for factors", {
  df <- data_frame(
    x = 1:3,
    y = 1:3,
    d = LETTERS[1:3],
    o = factor(LETTERS[1:3], ordered = TRUE)
  )
  p <- ggplot(df, aes(x, y))

  # There should be no warnings when unordered factors are mapped to shape
  expect_warning(ggplot_build(p + geom_point(aes(shape = d))), NA)

  # There should be warnings for ordered factors
  expect_warning(
    ggplot_build(p + geom_point(aes(shape = o))),
    "Using shapes for an ordinal variable is not advised"
  )
})

test_that("aesthetics can be set independently of scale name", {
  df <- data_frame(
    x = LETTERS[1:3],
    y = LETTERS[4:6]
  )
  p <- ggplot(df, aes(x, y, fill = y)) +
    scale_colour_manual(values = c("red", "green", "blue"), aesthetics = "fill")

  expect_equal(layer_data(p)$fill, c("red", "green", "blue"))
})

test_that("multiple aesthetics can be set with one function call", {
  df <- data_frame(
    x = LETTERS[1:3],
    y = LETTERS[4:6]
  )
  p <- ggplot(df, aes(x, y, colour = x, fill = y)) +
    scale_colour_manual(
      values = c("grey20", "grey40", "grey60", "red", "green", "blue"),
      aesthetics = c("colour", "fill")
    )

  expect_equal(layer_data(p)$colour, c("grey20", "grey40", "grey60"))
  expect_equal(layer_data(p)$fill, c("red", "green", "blue"))

  # color order is determined by data order, and breaks are combined where possible
  df <- data_frame(
    x = LETTERS[1:3],
    y = LETTERS[2:4]
  )
  p <- ggplot(df, aes(x, y, colour = x, fill = y)) +
    scale_colour_manual(
      values = c("cyan", "red", "green", "blue"),
      aesthetics = c("fill", "colour")
    )

  expect_equal(layer_data(p)$colour, c("cyan", "red", "green"))
  expect_equal(layer_data(p)$fill, c("red", "green", "blue"))
})

test_that("limits with NA are replaced with the min/max of the data for continuous scales", {
  make_scale <- function(limits = NULL, data = NULL) {
    scale <- continuous_scale("aesthetic", scale_name = "test", palette = identity, limits = limits)
    if (!is.null(data)) {
      scale$train(data)
    }
    scale
  }

  # emptiness
  expect_true(make_scale()$is_empty())
  expect_false(make_scale(limits = c(0, 1))$is_empty())
  expect_true(make_scale(limits = c(0, NA))$is_empty())
  expect_true(make_scale(limits = c(NA, NA))$is_empty())
  expect_true(make_scale(limits = c(NA, 0))$is_empty())

  # limits
  expect_equal(make_scale(data = 1:5)$get_limits(), c(1, 5))
  expect_equal(make_scale(limits = c(1, 5))$get_limits(), c(1, 5))
  expect_equal(make_scale(limits = c(NA, NA))$get_limits(), c(0, 1))
  expect_equal(make_scale(limits = c(NA, NA), data = 1:5)$get_limits(), c(1, 5))
  expect_equal(make_scale(limits = c(1, NA), data = 1:5)$get_limits(), c(1, 5))
  expect_equal(make_scale(limits = c(NA, 5), data = 1:5)$get_limits(), c(1, 5))
})

test_that("scale_apply preserves class and attributes", {
  df <- data_frame(
    x = structure(c(1, 2), foo = "bar", class = c("baz", "numeric")),
    y = c(1, 1),
    z = c("A", "B")
  )

  # Functions to make the 'baz'-class more type stable
  `c.baz` <- function(...) {
    dots <- list(...)
    attris <- attributes(dots[[1]])
    x <- do.call("c", lapply(dots, unclass))
    attributes(x) <- attris
    x
  }
  `[.baz` <- function(x, i) {
    attris <- attributes(x)
    x <- unclass(x)[i]
    attributes(x) <- attris
    x
  }

  plot <- ggplot(df, aes(x, y)) +
    scale_x_continuous() +
    # Facetting such that 2 x-scales will exist, i.e. `x` will be subsetted
    facet_grid(~ z, scales = "free_x")
  plot <- ggplot_build(plot)

  # Perform identity transformation via `scale_apply`
  out <- with_bindings(scale_apply(
    df, "x", "transform", 1:2, plot$layout$panel_scales_x
  )[[1]], `c.baz` = `c.baz`, `[.baz` = `[.baz`, .env = global_env())

  # Check class preservation
  expect_is(out, "baz")
  expect_is(out, "numeric")

  # Check attribute preservation
  expect_identical(attr(out, "foo"), "bar")

  # Negative control: non-type stable classes don't preserve attributes
  class(df$x) <- "foobar"

  out <- with_bindings(scale_apply(
    df, "x", "transform", 1:2, plot$layout$panel_scales_x
  )[[1]], `c.baz` = `c.baz`, `[.baz` = `[.baz`, .env = global_env())

  expect_false(inherits(out, "foobar"))
  expect_null(attributes(out))
})