1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
context("stat_bin/stat_count")
test_that("stat_bin throws error when y aesthetic is present", {
dat <- data_frame(x = c("a", "b", "c"), y = c(1, 5, 10))
expect_error(ggplot_build(ggplot(dat, aes(x, y)) + stat_bin()),
"can only have an x or y aesthetic.")
expect_error(
ggplot_build(ggplot(dat, aes(x)) + stat_bin(y = 5)),
"StatBin requires a continuous x"
)
})
test_that("stat_bin works in both directions", {
p <- ggplot(mpg, aes(hwy)) + stat_bin()
x <- layer_data(p)
expect_false(x$flipped_aes[1])
p <- ggplot(mpg, aes(y = hwy)) + stat_bin()
y <- layer_data(p)
expect_true(y$flipped_aes[1])
x$flipped_aes <- NULL
y$flipped_aes <- NULL
expect_identical(x, flip_data(y, TRUE)[,names(x)])
})
test_that("bins specifies the number of bins", {
df <- data_frame(x = 1:10)
out <- function(x, ...) {
layer_data(ggplot(df, aes(x)) + geom_histogram(...))
}
expect_equal(nrow(out(bins = 2)), 2)
expect_equal(nrow(out(bins = 100)), 100)
})
test_that("binwidth computes widths for function input", {
df <- data_frame(x = 1:100)
out <- layer_data(ggplot(df, aes(x)) + geom_histogram(binwidth = function(x) 5))
expect_equal(nrow(out), 21)
})
test_that("geom_histogram defaults to pad = FALSE", {
df <- data_frame(x = 1:3)
out <- layer_data(ggplot(df, aes(x)) + geom_histogram(binwidth = 1))
expect_equal(out$count, c(1, 1, 1))
})
test_that("geom_freqpoly defaults to pad = TRUE", {
df <- data_frame(x = 1:3)
out <- layer_data(ggplot(df, aes(x)) + geom_freqpoly(binwidth = 1))
expect_equal(out$count, c(0, 1, 1, 1, 0))
})
test_that("can use breaks argument", {
df <- data_frame(x = 1:3)
out <- layer_data(ggplot(df, aes(x)) + geom_histogram(breaks = c(0, 1.5, 5)))
expect_equal(out$count, c(1, 2))
})
test_that("fuzzy breaks are used when cutting", {
df <- data_frame(x = c(-1, -0.5, -0.4, 0))
p <- ggplot(df, aes(x)) +
geom_histogram(binwidth = 0.1, boundary = 0.1, closed = "left")
bins <- layer_data(p) %>% subset(count > 0) %>% .[1:5]
expect_equal(bins$count, c(1, 1, 1, 1))
})
test_that("breaks are transformed by the scale", {
df <- data_frame(x = rep(1:4, 1:4))
base <- ggplot(df, aes(x)) + geom_histogram(breaks = c(1, 2.5, 4))
out1 <- layer_data(base)
out2 <- layer_data(base + scale_x_sqrt())
expect_equal(out1$xmin, c(1, 2.5))
expect_equal(out2$xmin, sqrt(c(1, 2.5)))
})
test_that("geom_histogram() can be drawn over a 0-width range (#3043)", {
df <- data_frame(x = rep(1, 100))
out <- layer_data(ggplot(df, aes(x)) + geom_histogram())
expect_equal(nrow(out), 1)
expect_equal(out$xmin, 0.95)
expect_equal(out$xmax, 1.05)
})
# Underlying binning algorithm --------------------------------------------
comp_bin <- function(df, ...) {
plot <- ggplot(df, aes(x = x)) + stat_bin(...)
layer_data(plot)
}
test_that("closed left or right", {
dat <- data_frame(x = c(0, 10))
res <- comp_bin(dat, binwidth = 10, pad = FALSE)
expect_identical(res$count, c(1, 1))
res <- comp_bin(dat, binwidth = 10, boundary = 5, pad = FALSE)
expect_identical(res$count, c(1, 1))
res <- comp_bin(dat, binwidth = 10, boundary = 0, pad = FALSE)
expect_identical(res$count, 2)
res <- comp_bin(dat, binwidth = 5, boundary = 0, pad = FALSE)
expect_identical(res$count, c(1, 1))
res <- comp_bin(dat, binwidth = 10, pad = FALSE, closed = "left")
expect_identical(res$count, c(1, 1))
res <- comp_bin(dat, binwidth = 10, boundary = 5, pad = FALSE, closed = "left")
expect_identical(res$count, c(1, 1))
res <- comp_bin(dat, binwidth = 10, boundary = 0, pad = FALSE, closed = "left")
expect_identical(res$count, c(2))
res <- comp_bin(dat, binwidth = 5, boundary = 0, pad = FALSE, closed = "left")
expect_identical(res$count, c(1, 1))
})
test_that("setting boundary and center", {
# numeric
df <- data_frame(x = c(0, 30))
# Error if both boundary and center are specified
expect_error(comp_bin(df, boundary = 5, center = 0), "one of `boundary` and `center`")
res <- comp_bin(df, binwidth = 10, boundary = 0, pad = FALSE)
expect_identical(res$count, c(1, 0, 1))
expect_identical(res$xmin[1], 0)
expect_identical(res$xmax[3], 30)
res <- comp_bin(df, binwidth = 10, center = 0, pad = FALSE)
expect_identical(res$count, c(1, 0, 0, 1))
expect_identical(res$xmin[1], df$x[1] - 5)
expect_identical(res$xmax[4], df$x[2] + 5)
})
test_that("weights are added", {
df <- data_frame(x = 1:10, y = 1:10)
p <- ggplot(df, aes(x = x, weight = y)) + geom_histogram(binwidth = 1)
out <- layer_data(p)
expect_equal(out$count, df$y)
})
test_that("bin errors at high bin counts", {
expect_error(bin_breaks_width(c(1, 2e6), 1), "The number of histogram bins")
})
# stat_count --------------------------------------------------------------
test_that("stat_count throws error when y aesthetic present", {
dat <- data_frame(x = c("a", "b", "c"), y = c(1, 5, 10))
expect_error(
ggplot_build(ggplot(dat, aes(x, y)) + stat_count()),
"can only have an x or y aesthetic.")
expect_error(
ggplot_build(ggplot(dat, aes(x)) + stat_count(y = 5)),
"must not be used with a y aesthetic."
)
})
test_that("stat_count preserves x order for continuous and discrete", {
# x is numeric
b <- ggplot_build(ggplot(mtcars, aes(carb)) + geom_bar())
expect_identical(b$data[[1]]$x, c(1,2,3,4,6,8))
expect_identical(b$data[[1]]$y, c(7,10,3,10,1,1))
# x is factor where levels match numeric order
mtcars$carb2 <- factor(mtcars$carb)
b <- ggplot_build(ggplot(mtcars, aes(carb2)) + geom_bar())
expect_identical(b$data[[1]]$x, new_mapped_discrete(1:6))
expect_identical(b$data[[1]]$y, c(7,10,3,10,1,1))
# x is factor levels differ from numeric order
mtcars$carb3 <- factor(mtcars$carb, levels = c(4,1,2,3,6,8))
b <- ggplot_build(ggplot(mtcars, aes(carb3)) + geom_bar())
expect_identical(b$data[[1]]$x, new_mapped_discrete(1:6))
expect_identical(b$layout$panel_params[[1]]$x$get_labels(), c("4","1","2","3","6","8"))
expect_identical(b$data[[1]]$y, c(10,7,10,3,1,1))
})
|