1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
#' Control aesthetic evaluation
#'
#' @description
#' Most [aesthetics][aes()] are mapped from variables found in the data.
#' Sometimes, however, you want to delay the mapping until later in the
#' rendering process. ggplot2 has three stages of the data that you can map
#' aesthetics from, and three functions to control at which stage aesthetics
#' should be evaluated.
#'
#' @description
#' `after_stat()` replaces the old approaches of using either `stat()`, e.g.
#' `stat(density)`, or surrounding the variable names with `..`, e.g.
#' `..density..`.
#'
#' @usage
#' # These functions can be used inside the `aes()` function
#' # used as the `mapping` argument in layers, for example:
#' # geom_density(mapping = aes(y = after_stat(scaled)))
#'
#' @param x <[`data-masking`][rlang::topic-data-mask]> An aesthetic expression
#' using variables calculated by the stat (`after_stat()`) or layer aesthetics
#' (`after_scale()`).
#' @param start <[`data-masking`][rlang::topic-data-mask]> An aesthetic
#' expression using variables from the layer data.
#' @param after_stat <[`data-masking`][rlang::topic-data-mask]> An aesthetic
#' expression using variables calculated by the stat.
#' @param after_scale <[`data-masking`][rlang::topic-data-mask]> An aesthetic
#' expression using layer aesthetics.
#'
#' @details
#' # Staging
#' Below follows an overview of the three stages of evaluation and how aesthetic
#' evaluation can be controlled.
#'
#' ## Stage 1: direct input
#' The default is to map at the beginning, using the layer data provided by
#' the user. If you want to map directly from the layer data you should not do
#' anything special. This is the only stage where the original layer data can
#' be accessed.
#'
#' ```r
#' # 'x' and 'y' are mapped directly
#' ggplot(mtcars) + geom_point(aes(x = mpg, y = disp))
#' ```
#'
#' ## Stage 2: after stat transformation
#' The second stage is after the data has been transformed by the layer
#' stat. The most common example of mapping from stat transformed data is the
#' height of bars in [geom_histogram()]: the height does not come from a
#' variable in the underlying data, but is instead mapped to the `count`
#' computed by [stat_bin()]. In order to map from stat transformed data you
#' should use the `after_stat()` function to flag that evaluation of the
#' aesthetic mapping should be postponed until after stat transformation.
#' Evaluation after stat transformation will have access to the variables
#' calculated by the stat, not the original mapped values. The 'computed
#' variables' section in each stat lists which variables are available to
#' access.
#'
#' ```r
#' # The 'y' values for the histogram are computed by the stat
#' ggplot(faithful, aes(x = waiting)) +
#' geom_histogram()
#'
#' # Choosing a different computed variable to display, matching up the
#' # histogram with the density plot
#' ggplot(faithful, aes(x = waiting)) +
#' geom_histogram(aes(y = after_stat(density))) +
#' geom_density()
#' ```
#'
#' ## Stage 3: after scale transformation
#' The third and last stage is after the data has been transformed and
#' mapped by the plot scales. An example of mapping from scaled data could
#' be to use a desaturated version of the stroke colour for fill. You should
#' use `after_scale()` to flag evaluation of mapping for after data has been
#' scaled. Evaluation after scaling will only have access to the final
#' aesthetics of the layer (including non-mapped, default aesthetics).
#'
#' ```r
#' # The exact colour is known after scale transformation
#' ggplot(mpg, aes(cty, colour = factor(cyl))) +
#' geom_density()
#'
#' # We re-use colour properties for the fill without a separate fill scale
#' ggplot(mpg, aes(cty, colour = factor(cyl))) +
#' geom_density(aes(fill = after_scale(alpha(colour, 0.3))))
#' ```
#'
#' ## Complex staging
#' If you want to map the same aesthetic multiple times, e.g. map `x` to a
#' data column for the stat, but remap it for the geom, you can use the
#' `stage()` function to collect multiple mappings.
#'
#' ```r
#' # Use stage to modify the scaled fill
#' ggplot(mpg, aes(class, hwy)) +
#' geom_boxplot(aes(fill = stage(class, after_scale = alpha(fill, 0.4))))
#'
#' # Using data for computing summary, but placing label elsewhere.
#' # Also, we're making our own computed variable to use for the label.
#' ggplot(mpg, aes(class, displ)) +
#' geom_violin() +
#' stat_summary(
#' aes(
#' y = stage(displ, after_stat = 8),
#' label = after_stat(paste(mean, "±", sd))
#' ),
#' geom = "text",
#' fun.data = ~ round(data.frame(mean = mean(.x), sd = sd(.x)), 2)
#' )
#' ```
#' @rdname aes_eval
#' @name aes_eval
#'
#' @examples
#' # Default histogram display
#' ggplot(mpg, aes(displ)) +
#' geom_histogram(aes(y = after_stat(count)))
#'
#' # Scale tallest bin to 1
#' ggplot(mpg, aes(displ)) +
#' geom_histogram(aes(y = after_stat(count / max(count))))
#'
#' # Use a transparent version of colour for fill
#' ggplot(mpg, aes(class, hwy)) +
#' geom_boxplot(aes(colour = class, fill = after_scale(alpha(colour, 0.4))))
#'
#' # Use stage to modify the scaled fill
#' ggplot(mpg, aes(class, hwy)) +
#' geom_boxplot(aes(fill = stage(class, after_scale = alpha(fill, 0.4))))
#'
#' # Making a proportional stacked density plot
#' ggplot(mpg, aes(cty)) +
#' geom_density(
#' aes(
#' colour = factor(cyl),
#' fill = after_scale(alpha(colour, 0.3)),
#' y = after_stat(count / sum(n[!duplicated(group)]))
#' ),
#' position = "stack", bw = 1
#' ) +
#' geom_density(bw = 1)
#'
#' # Imitating a ridgeline plot
#' ggplot(mpg, aes(cty, colour = factor(cyl))) +
#' geom_ribbon(
#' stat = "density", outline.type = "upper",
#' aes(
#' fill = after_scale(alpha(colour, 0.3)),
#' ymin = after_stat(group),
#' ymax = after_stat(group + ndensity)
#' )
#' )
#'
#' # Labelling a bar plot
#' ggplot(mpg, aes(class)) +
#' geom_bar() +
#' geom_text(
#' aes(
#' y = after_stat(count + 2),
#' label = after_stat(count)
#' ),
#' stat = "count"
#' )
#'
#' # Labelling the upper hinge of a boxplot,
#' # inspired by June Choe
#' ggplot(mpg, aes(displ, class)) +
#' geom_boxplot(outlier.shape = NA) +
#' geom_text(
#' aes(
#' label = after_stat(xmax),
#' x = stage(displ, after_stat = xmax)
#' ),
#' stat = "boxplot", hjust = -0.5
#' )
NULL
#' @rdname aes_eval
#' @export
after_stat <- function(x) {
x
}
#' @rdname aes_eval
#' @usage NULL
#' @export
stat <- function(x) {
x
}
#' @rdname aes_eval
#' @export
after_scale <- function(x) {
x
}
#' @rdname aes_eval
#' @export
stage <- function(start = NULL, after_stat = NULL, after_scale = NULL) {
start
}
stage_calculated <- function(start = NULL, after_stat = NULL, after_scale = NULL) {
after_stat
}
stage_scaled <- function(start = NULL, after_stat = NULL, after_scale = NULL) {
after_scale
}
# Regex to determine if an identifier refers to a calculated aesthetic
match_calculated_aes <- "^\\.\\.([a-zA-Z._]+)\\.\\.$"
is_dotted_var <- function(x) {
grepl(match_calculated_aes, x)
}
# Determine if aesthetic is calculated
is_calculated_aes <- function(aesthetics, warn = FALSE) {
vapply(aesthetics, is_calculated, warn = warn, logical(1), USE.NAMES = FALSE)
}
is_scaled_aes <- function(aesthetics) {
vapply(aesthetics, is_scaled, logical(1), USE.NAMES = FALSE)
}
is_staged_aes <- function(aesthetics) {
vapply(aesthetics, is_staged, logical(1), USE.NAMES = FALSE)
}
is_calculated <- function(x, warn = FALSE) {
if (is_call(get_expr(x), "after_stat")) {
return(TRUE)
}
# Support of old recursive behaviour
if (is.atomic(x)) {
FALSE
} else if (is.symbol(x)) {
res <- is_dotted_var(as.character(x))
if (res && warn) {
what <- I(glue("The dot-dot notation (`{x}`)"))
var <- gsub(match_calculated_aes, "\\1", as.character(x))
with <- I(glue("`after_stat({var})`"))
deprecate_warn0("3.4.0", what, with, id = "ggplot-warn-aes-dot-dot")
}
res
} else if (is_quosure(x)) {
is_calculated(quo_get_expr(x), warn = warn)
} else if (is.call(x)) {
if (identical(x[[1]], quote(stat))) {
if (warn) {
what <- I(glue("`{expr_deparse(x)}`"))
x[[1]] <- quote(after_stat)
with <- I(glue("`{expr_deparse(x)}`"))
deprecate_warn0("3.4.0", what, with, id = "ggplot-warn-aes-stat")
}
TRUE
} else {
any(vapply(x, is_calculated, warn = warn, logical(1)))
}
} else if (is.pairlist(x)) {
FALSE
} else {
cli::cli_abort("Unknown input: {.cls {class(x)[1]}}")
}
}
is_scaled <- function(x) {
is_call(get_expr(x), "after_scale")
}
is_staged <- function(x) {
is_call(get_expr(x), "stage")
}
# Strip dots from expressions
strip_dots <- function(expr, env, strip_pronoun = FALSE) {
if (is.atomic(expr)) {
expr
} else if (is.name(expr)) {
expr_ch <- as.character(expr)
if (nchar(expr_ch) > 0) {
as.name(gsub(match_calculated_aes, "\\1", expr_ch))
} else {
expr
}
} else if (is_quosure(expr)) {
# strip dots from quosure and reconstruct the quosure
new_quosure(
strip_dots(quo_get_expr(expr), env = quo_get_env(expr), strip_pronoun = strip_pronoun),
quo_get_env(expr)
)
} else if (is.call(expr)) {
if (strip_pronoun && is_call(expr, "$") && is_symbol(expr[[2]], ".data")) {
strip_dots(expr[[3]], env, strip_pronoun = strip_pronoun)
} else if (strip_pronoun && is_call(expr, "[[") && is_symbol(expr[[2]], ".data")) {
tryCatch(
sym(eval(expr[[3]], env)),
error = function(e) expr[[3]]
)
} else if (is_call(expr, "stat")) {
strip_dots(expr[[2]], env, strip_pronoun = strip_pronoun)
} else {
expr[-1] <- lapply(expr[-1], strip_dots, env = env, strip_pronoun = strip_pronoun)
expr
}
} else if (is.pairlist(expr)) {
# In the unlikely event of an anonymous function
as.pairlist(lapply(expr, strip_dots, env = env, strip_pronoun = strip_pronoun))
} else if (is.list(expr)) {
# For list of aesthetics
lapply(expr, strip_dots, env = env, strip_pronoun = strip_pronoun)
} else {
cli::cli_abort("Unknown input: {.cls {class(expr)[1]}}")
}
}
strip_stage <- function(expr) {
uq_expr <- get_expr(expr)
if (is_call(uq_expr, c("after_stat", "after_scale"))) {
uq_expr[[2]]
} else if (is_call(uq_expr, "stage")) {
# Prefer stat mapping if present, otherwise original mapping (fallback to
# scale mapping) but there should always be two arguments to stage()
uq_expr$after_stat %||% uq_expr$start %||% (if (is.null(uq_expr$after_scale)) uq_expr[[3]]) %||% uq_expr[[2]]
} else {
expr
}
}
# Convert aesthetic mapping into text labels
make_labels <- function(mapping) {
default_label <- function(aesthetic, mapping) {
# e.g., geom_smooth(aes(colour = "loess")) or aes(y = NULL)
if (is.atomic(mapping)) {
return(aesthetic)
}
mapping <- strip_stage(mapping)
mapping <- strip_dots(mapping, strip_pronoun = TRUE)
if (is_quosure(mapping) && quo_is_symbol(mapping)) {
name <- as_string(quo_get_expr(mapping))
} else {
name <- quo_text(mapping)
name <- gsub("\n.*$", "...", name)
}
name
}
Map(default_label, names(mapping), mapping)
}
|