1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
#' Adds missing elements to a vector from a default vector
#'
#' This function appends a given named vector or list with additional elements
#' from a default vector, only adding those that does not already exist in the
#' first.
#'
#' @param x,y Named vectors or lists
#'
#' @return `x` with missing values from `y` appended
#'
#' @keywords internal
#' @noRd
#'
defaults <- function(x, y) c(x, y[setdiff(names(y), names(x))])
# Remove rownames from data frames and matrices
unrowname <- function(x) {
if (is.data.frame(x)) {
attr(x, "row.names") <- .set_row_names(.row_names_info(x, 2L))
} else if (is.matrix(x)) {
dimnames(x)[1] <- list(NULL)
} else {
cli::cli_abort("Can only remove rownames from {.cls data.frame} and {.cls matrix} objects")
}
x
}
#' Rename elements in a list, data.frame or vector
#'
#' This is akin to `dplyr::rename` and `plyr::rename`. It renames elements given
#' as names in the `replace` vector to the values in the `replace` vector
#' without touching elements not referenced.
#'
#' @param x A data.frame or a named vector or list
#' @param replace A named character vector. The names identifies the elements in
#' `x` that should be renamed and the values gives the new names.
#'
#' @return `x`, with new names according to `replace`
#'
#' @keywords internal
#' @noRd
#'
rename <- function(x, replace) {
current_names <- names(x)
old_names <- names(replace)
missing_names <- setdiff(old_names, current_names)
if (length(missing_names) > 0) {
replace <- replace[!old_names %in% missing_names]
old_names <- names(replace)
}
names(x)[match(old_names, current_names)] <- as.vector(replace)
x
}
# Adapted from plyr:::id_vars
# Create a unique id for elements in a single vector
id_var <- function(x, drop = FALSE) {
if (length(x) == 0) {
id <- integer()
n = 0L
} else if (!is.null(attr(x, "n")) && !drop) {
return(x)
} else if (is.factor(x) && !drop) {
x <- addNA(x, ifany = TRUE)
id <- as.integer(x)
n <- length(levels(x))
} else {
levels <- sort(unique0(x), na.last = TRUE)
id <- match(x, levels)
n <- max(id)
}
attr(id, "n") <- n
id
}
#' Create an unique integer id for each unique row in a data.frame
#'
#' Properties:
#' - `order(id)` is equivalent to `do.call(order, df)`
#' - rows containing the same data have the same value
#' - if `drop = FALSE` then room for all possibilites
#'
#' @param .variables list of variables
#' @param drop Should unused factor levels be dropped?
#'
#' @return An integer vector with attribute `n` giving the total number of
#' possible unique rows
#'
#' @keywords internal
#' @noRd
#'
id <- function(.variables, drop = FALSE) {
nrows <- NULL
if (is.data.frame(.variables)) {
nrows <- nrow(.variables)
.variables <- unclass(.variables)
}
lengths <- vapply(.variables, length, integer(1))
.variables <- .variables[lengths != 0]
if (length(.variables) == 0) {
n <- nrows %||% 0L
id <- seq_len(n)
attr(id, "n") <- n
return(id)
}
if (length(.variables) == 1) {
return(id_var(.variables[[1]], drop = drop))
}
ids <- rev(lapply(.variables, id_var, drop = drop))
p <- length(ids)
ndistinct <- vapply(ids, attr, "n", FUN.VALUE = numeric(1), USE.NAMES = FALSE)
n <- prod(ndistinct)
if (n > 2^31) {
char_id <- inject(paste(!!!ids, sep = "\r"))
res <- match(char_id, unique0(char_id))
}
else {
combs <- c(1, cumprod(ndistinct[-p]))
mat <- inject(cbind(!!!ids))
res <- c((mat - 1L) %*% combs + 1L)
}
if (drop) {
id_var(res, drop = TRUE)
}
else {
res <- as.integer(res)
attr(res, "n") <- n
res
}
}
#' Count number of occurences for each unique combination of variables
#'
#' Each unique combination of the variables in `df` given by `vars` will be
#' identified and their occurences counted. If `wt_var` is given the counts will
#' be weighted by the values in this column.
#'
#' @param df A data.frame
#' @param vars A vector of column names. If `NULL` all columns in `df` will be
#' used
#' @param wt_var The name of a column to use as weight
#'
#' @return A data.frame with the unique combinations counted along with a `n`
#' column giving the counts
#'
#' @keywords internal
#' @noRd
#'
count <- function(df, vars = NULL, wt_var = NULL) {
df2 <- if (is.null(vars)) df else df[vars]
id <- id(df2, drop = TRUE)
u_id <- !duplicated(id)
labels <- df2[u_id, , drop = FALSE]
labels <- labels[order(id[u_id]), , drop = FALSE]
if (is.null(wt_var)) {
freq <- tabulate(id, attr(id, "n"))
} else {
wt <- .subset2(df, wt_var)
freq <- vapply(split(wt, id), sum, numeric(1))
}
data_frame0(labels, n = freq)
}
# Adapted from plyr::join.keys
# Create a shared unique id across two data frames such that common variable
# combinations in the two data frames gets the same id
join_keys <- function(x, y, by) {
joint <- vec_rbind0(x[by], y[by])
keys <- id(joint, drop = TRUE)
n_x <- nrow(x)
n_y <- nrow(y)
list(x = keys[seq_len(n_x)], y = keys[n_x + seq_len(n_y)],
n = attr(keys, "n"))
}
#' Replace specified values with new values, in a factor or character vector
#'
#' An easy to use substitution of elements in a string-like vector (character or
#' factor). If `x` is a character vector the matching elements will be replaced
#' directly and if `x` is a factor the matching levels will be replaced
#'
#' @param x A character or factor vector
#' @param replace A named character vector with the names corresponding to the
#' elements to replace and the values giving the replacement.
#'
#' @return A vector of the same class as `x` with the given values replaced
#'
#' @keywords internal
#' @noRd
#'
revalue <- function(x, replace) {
if (is.character(x)) {
replace <- replace[names(replace) %in% x]
if (length(replace) == 0) return(x)
x[match(names(replace), x)] <- replace
} else if (is.factor(x)) {
lev <- levels(x)
replace <- replace[names(replace) %in% lev]
if (length(replace) == 0) return(x)
lev[match(names(replace), lev)] <- replace
levels(x) <- lev
} else if (!is.null(x)) {
cli::cli_abort("{.arg x} must be a factor or character vector")
}
x
}
# Iterate through a formula and return a quoted version
simplify_formula <- function(x) {
if (length(x) == 2 && x[[1]] == as.name("~")) {
return(simplify(x[[2]]))
}
if (length(x) < 3)
return(list(x))
op <- x[[1]]
a <- x[[2]]
b <- x[[3]]
if (op == as.name("+") || op == as.name("*") || op ==
as.name("~")) {
c(simplify(a), simplify(b))
}
else if (op == as.name("-")) {
c(simplify(a), bquote(-.(x), list(x = simplify(b))))
}
else {
list(x)
}
}
#' Create a quoted version of x
#'
#' This function captures the special meaning of formulas in the context of
#' facets in ggplot2, where `+` have special meaning. It works as
#' `plyr::as.quoted` but only for the special cases of `character`, `call`, and
#' `formula` input as these are the only situations relevant for ggplot2.
#'
#' @param x A formula, string, or call to be quoted
#' @param env The environment to a attach to the quoted expression.
#'
#' @keywords internal
#' @noRd
#'
as.quoted <- function(x, env = parent.frame()) {
x <- if (is.character(x)) {
lapply(x, function(x) parse(text = x)[[1]])
} else if (is.formula(x)) {
simplify_formula(x)
} else if (is.call(x)) {
as.list(x)[-1]
} else {
cli::cli_abort("Must be a character vector, call, or formula")
}
attributes(x) <- list(env = env, class = 'quoted')
x
}
# round a number to a given precision
round_any <- function(x, accuracy, f = round) {
if (!is.numeric(x)) {
cli::cli_abort("{.arg x} must be numeric")
}
f(x/accuracy) * accuracy
}
#' Apply function to unique subsets of a data.frame
#'
#' This function is akin to `plyr::ddply`. It takes a single data.frame,
#' splits it by the unique combinations of the columns given in `by`, apply a
#' function to each split, and then reassembles the results into a sigle
#' data.frame again.
#'
#' @param df A data.frame
#' @param by A character vector of column names to split by
#' @param fun A function to apply to each split
#' @param ... Further arguments to `fun`
#' @param drop Should unused factor levels in the columns given in `by` be
#' dropped.
#'
#' @return A data.frame if the result of `fun` does not include the columns
#' given in `by` these will be prepended to the result.
#'
#' @keywords internal
#' @noRd
dapply <- function(df, by, fun, ..., drop = TRUE) {
grouping_cols <- .subset(df, by)
fallback_order <- unique0(c(by, names(df)))
apply_fun <- function(x) {
res <- fun(x, ...)
if (is.null(res)) return(res)
if (length(res) == 0) return(data_frame0())
vars <- lapply(setNames(by, by), function(col) .subset2(x, col)[1])
if (is.matrix(res)) res <- split_matrix(res)
if (is.null(names(res))) names(res) <- paste0("V", seq_along(res))
if (all(by %in% names(res))) return(data_frame0(!!!unclass(res)))
res <- modify_list(unclass(vars), unclass(res))
res <- res[intersect(c(fallback_order, names(res)), names(res))]
data_frame0(!!!res)
}
# Shortcut when only one group
if (all(vapply(grouping_cols, single_value, logical(1)))) {
return(apply_fun(df))
}
ids <- id(grouping_cols, drop = drop)
group_rows <- split_with_index(seq_len(nrow(df)), ids)
result <- lapply(seq_along(group_rows), function(i) {
cur_data <- df_rows(df, group_rows[[i]])
apply_fun(cur_data)
})
vec_rbind0(!!!result)
}
single_value <- function(x, ...) {
UseMethod("single_value")
}
#' @export
single_value.default <- function(x, ...) {
# This is set by id() used in creating the grouping var
identical(attr(x, "n"), 1L)
}
#' @export
single_value.factor <- function(x, ...) {
# Panels are encoded as factor numbers and can never be missing (NA)
identical(levels(x), "1")
}
|